Skip to main content

Advertisement

Log in

In situ grown nano-architectures of Co3O4 on Ni-foam for charge storage application

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Nanostructured Co3O4 on Ni-foam has been synthesized with diverse morphologies, high surface area and porosity by employing different surfactants under hydrothermal conditions and subsequent calcination. The surfactants strongly influence the physicochemical properties of cobalt oxide samples. The cobalt oxide grown on Ni-foam without surfactant had flower-like morphology. However, cobalt oxides synthesized by using cationic (CTAB) and non-ionic (Triton X-100) surfactants showed flake-like morphology, but the spatial arrangement of flakes was found to be different in both the samples. The surfactant-assisted cobalt oxide showed average crystallite size of ∼6.6–9.8 nm, surface area of 60–80 m2g−1 and porosity (pore diameter ∼3.8 nm). These samples were found to perform better as charge storage electrode materials. The specific capacitance values of cationic and non-ionic surfactant-assisted cobalt oxide materials, at a current density of 1.0 A g−1, were 1820 and 806 F g−1, respectively, compared to 288 F g−1 of cobalt oxide prepared without surfactant. They also showed excellent capacity retention for over 3000 charge-discharge cycles at higher current densities. The difference in the capacitance values of cationic and non-ionic surfactant-assisted cobalt oxide is due to the difference in the flake arrangement.

The surfactant assisted synthesized flake-like morphologies of cobalt oxide shows high charge storage performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Shukla A K, Sampath S and Vijayamohanan K 2000 Electrochemical supercapacitors: Energy storage beyond batteries Current Sci. 79 1656

    CAS  Google Scholar 

  2. Sun H, Ang H M, Tadé M O and Wang S 2013 Co3O4 nanocrystals with predominantly exposed facets: Synthesis, environmental and energy applications J. Mater. Chem. A 1 14427

    Article  CAS  Google Scholar 

  3. Patzke G R, Zhou Y, Kontic R and Conrad F 2011 Oxide nanomaterials: Synthetic developments, mechanistic studies, and technological innovations Angew. Chem. Int. Ed. 50 826

    Article  CAS  Google Scholar 

  4. Xia X, Zhang Y, Chao D, Guan C, Zhang Y, Li L, Ge X, Bacho I M, Tu J and Fan H J 2014 Solution synthesis of metal oxides for electrochemical energy storage applications Nanoscale 6 5008

    Article  CAS  Google Scholar 

  5. Meher S K and Ranga Rao G 2014 Novel nanostructured CeO 2 as efficient catalyst for energy and environmental applications J. Chem. Sci. 126 361

    Article  CAS  Google Scholar 

  6. Vivekchand S R C, Rout C S, Subrahmanyam K S, Govindaraj A and Rao C N R 2008 Graphene-based electrochemical supercapacitors J. Chem. Sci. 120 9

    Article  CAS  Google Scholar 

  7. Devaraj S, Gabriel G S, Gajjela S R and Balaya P 2012 Mesoporous MnO 2 and its capacitive behaviour Electrochem. Solid State Lett. 15A 57

    Article  Google Scholar 

  8. Umeshbabu E, Rajeshkhanna G and Ranga Rao G 2016 Effect of solvents on the morphology of NiCo2O4/graphene nanostructures for electrochemical pseudocapacitor application J. Solid State Electrochem. 20 1837

    Article  CAS  Google Scholar 

  9. Umeshbabu E, Rajeshkhanna G, Justin P and Ranga Rao G 2016 NiCo 2 O 4/rGO hybrid nanostructures for efficient electrocatalytic oxygen evolution J. Solid State Electrochem. J. Solid State Electrochem. 20 2725

    Article  CAS  Google Scholar 

  10. Meher S K and Ranga Rao G 2011 Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co 3 O 4 J. Phys. Chem. C 115 25543

    Article  CAS  Google Scholar 

  11. Meher S K and Ranga Rao G 2011 Ultralayered Co 3 O 4 for high-performance supercapacitor applications J. Phys. Chem. C 115 15646

    Article  CAS  Google Scholar 

  12. Yang Q, Lu Z, Sun X and Liu J 2013 Ultrathin Co 3 O 4 nanosheet arrays with high supercapacitive performance Sci. Rep. 3 3537

    Google Scholar 

  13. Wang X, Yao S, Wu X, Shi Z, Sun H and Que R 2015 High gas-sensor and supercapacitor performance of porous Co 3 O 4 ultrathin nanosheets RSC Adv. 5 17938

    Article  CAS  Google Scholar 

  14. Zhang X, Zhao Y and Xu C 2014 Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: From nanowire microspheres to nanowire paddy fields Nanoscale 6 3638

    Article  CAS  Google Scholar 

  15. Yuan C, Yang L, Hou L, Shen L, Zhang X and Lou X W 2012 Growth of ultrathin mesoporous Co 3 O 4nanosheet arrays on Ni foam for high-performance electrochemical capacitors Energy Environ. Sci. 5 7883

    Article  CAS  Google Scholar 

  16. Shim H-W, Lim A-H, Kim J-C, Jang E, Seo S-D, Lee G-H, Kim T D and Kim D-W 2013 Scalable one-pot bacteria-templating synthesis route toward hierarchical, porous-Co 3 O 4 superstructures for supercapacitorelectrodes Sci. Rep. 3 2325

    Google Scholar 

  17. Dong X-C, Xu H, Wang X-W, Huang Y-X, Chan-Park M B, Zhang H, Wang L-H, Huang W and Chen P 2012 3D grapheme cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection ACS Nano 6 3206

    Article  CAS  Google Scholar 

  18. Dinga Y, Wanga Y, Sua L, Bellagambaa M, Zhangb H and Lei Y 2010 Electrospun Co 3 O 4nanofibers for sensitive and selective glucose detection Biosens. Bioelectron. 26 542

    Article  Google Scholar 

  19. Jena A, Munichandraiah N and Shivashankar S A 2015 Metal-organic chemical vapor-deposited cobalt oxide films as negative electrodes for thin film Li-ion battery J. Power Sources 277 198

    Article  CAS  Google Scholar 

  20. Rajeshkhanna G, Umeshbabu E and Ranga Rao G 2017 Charge storage, electrocatalytic and sensing activities of nest-like nanostructured Co 3 O 4 J. Colloid Interface Sci. 487 20

    Article  CAS  Google Scholar 

  21. Xia H, Peng Z, Cuncal L V, Zhao Y, Hao J and Huang Z 2016 Self-supported porous cobalt oxide nanowires with enhanced electrocatalytic performance toward oxygen evolution reaction J. Chem. Sci. doi:10.1007/s12039-016-1192-z

  22. Li X, Fang Y, Lin X, Tian M, An X, Fu Y, Li R, Jin J and Ma J 2015 MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: Extraordinary bi-functional electrocatalysts for OER and ORR J. Mater. Chem. A 3 17392

    Article  CAS  Google Scholar 

  23. Song H, Shen L and Wang C 2014 Template-free method towards quadrate Co 3 O 4nanoboxes from cobalt coordination polymer nano-solids for high performance lithium ion battery anodes J. Mater. Chem. A 2 20597

    Article  CAS  Google Scholar 

  24. Simon P and Gogotsi Y 2008 Materials for electrochemical capacitors Nat. Mater. 7 845

    Article  CAS  Google Scholar 

  25. Vijayanand S, Kannan R, Potdar H S, Pillai V K and Joy P A 2013 Porous Co3O4 nanorods as superior electrode material for supercapacitors and rechargeable Li-ion batteries J. Appl. Electrochem. 43 995

    Article  CAS  Google Scholar 

  26. Umeshbabu E, Rajeshkhanna G and Ranga Rao G 2014 Urchin and sheaf-like NiCo2O4nanostructures: Synthesis and electrochemical energy storage application Int. J. Hydrogen Energy 39 15627

    Article  CAS  Google Scholar 

  27. Syedvali P, Rajeshkhanna G, Umeshbabu E, Kiran G U, Ranga Rao G and Justin P 2015 In situ fabrication of graphene decorated microstructured globe artichokes of partial molar nickel cobaltite anchored on a Ni foam as a high performance supercapacitor electrode RSC Adv. 5 38407

    Article  CAS  Google Scholar 

  28. Rajeshkhanna G, Umeshbabu E, Justin P and Ranga Rao G 2015 In situ fabrication of porous festucascoparia-like Ni 0.3Co 2.7 O 4 nanostructures on Ni-foam: An efficient electrode material for supercapacitor applications Int. J. Hydrogen Energy 40 12303

    Article  CAS  Google Scholar 

  29. Umeshbabu E, Rajeshkhanna G, Justin P and Ranga Rao G 2015 Synthesis of mesoporous NiCo 2 O 4-rGO by solvothermal method for charge storage applications RSC Adv. 5 66657

    Article  CAS  Google Scholar 

  30. Zhang Q, Deng Y, Hu Z, Liu Y, Yao M and Liu P 2014 Sea urchin-like hierarchical NiCo2O4@NiMoO4 core-shell nanomaterials for high performance supercapacitors Phys. Chem. Chem. Phys. 16 23451

    Article  CAS  Google Scholar 

  31. Cheng G, Yang W, Dong C, Kou T, Bai Q, Wang H and Zhang Z 2015 Ultrathin mesoporous NiO nanosheet-anchored 3D nickel foam as an advanced electrode for supercapacitors J. Mater. Chem. A 3 17469

    Article  CAS  Google Scholar 

  32. Hu L, Peng Q and Li Y 2008 Selective synthesis of Co3O4nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion J. Am. Chem. Soc. 130 16136

    Article  CAS  Google Scholar 

  33. Dam D T and Lee J-M 2014 Three-dimensional cobalt oxide microstructures with brush-like morphology via surfactant-dependent assembly ACS Appl. Mater. Interfaces 6 20729

    Article  CAS  Google Scholar 

  34. Whitesides G M and Boncheva M 2002 Beyond molecules: Self-assembly of mesoscopic and macroscopic components Proc. Natl. Acad. Sci. 99 4769

    Article  CAS  Google Scholar 

  35. Xia X-H, Tu J-P, Wang X-L, Gu C-D and Zhao X-B 2011 Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material Chem. Commun. 47 5786

    Article  CAS  Google Scholar 

  36. Liu Z-Q, Xiao K, Xu Q-Z, Li N, Su Y-Z, Wang H-J and Chen S 2013 Fabrication of hierarchical flower-like super-structures consisting of porous NiCo 2 O 4 nanosheets and their electrochemical and magnetic properties RSC Adv. 3 4372

    Article  CAS  Google Scholar 

  37. Mei W, Huang J, Zhu L, Ye Z, Mai Y and Tu J 2012 Synthesis of porous rhombus-shaped Co 3 O 4nanorod arrays grown directly on a nickel substrate with high electrochemical performance J. Mater. Chem. 22 9315

    Article  CAS  Google Scholar 

  38. Rouquerol F H, Rouquerol J and Sing K 1999 In Adsorption by powders and porous solids (London: Academic Press)

  39. Wang X, Sumboja A, Khoo E, Yan C and Lee P S 2012 Cryogelsynthesis of hierarchical interconnected macro-/mesoporous Co 3 O 4 with superb electrochemical energy storage J. Phys. Chem. C 116 4930

    Article  CAS  Google Scholar 

  40. Xia Q X, Hui K S, Hui K N, Kim S D, Lim J H, Choi S Y, Zhang L J, Mane R S, Yun J M and Kim K H 2015 Facile synthesis of manganese carbonate quantum dots/Ni(HCO3) 2-MnCO3 composites as advanced cathode materials for high energy density asymmetric supercapacitors J. Mater. Chem. A 3 22102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

GR and EU would like to thank the UGC and CSIR, New Delhi for granting the JRF and SRF fellowships, respectively. Authors thank the DST, New Delhi, for FIST experimental facilities and MNRE (102/28/2006-NT) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G RANGA RAO.

Additional information

Supporting information (SI)

The comparison of specific capacitance values and capacity retention of recent reports (Table S1), the comparison of specific capacitance retention values (Table S2) and galvanostatic discharge profiles of Co 3 O 4-C, Co 3 O 4-T and Co 3 O 4 materials (Figures S1a to S1c) are given in the supporting information, available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 412 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RAJESHKHANNA, G., UMESHBABU, E. & RAO, G.R. In situ grown nano-architectures of Co3O4 on Ni-foam for charge storage application. J Chem Sci 129, 157–166 (2017). https://doi.org/10.1007/s12039-016-1212-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1212-z

Keywords

Navigation