Skip to main content
Log in

What Triggers Supramolecular Isomerism in Nonmolecular Solids? A case study of Copper Pyridazine Halides

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Molecular recognition and aggregation occurring in solution are critical events towards the nucleation and growth of a crystal. However, controlling aggregation towards a particular supramolecular assembly is difficult due to lack of information on its thermodynamics and kinetics. Hence, the occurrence of supramolecular isomers is hardly recognized. In this paper, therefore, we demonstrate a retrosynthetic analysis to interpret the occurrence of isostructures and supramolecular isomers and predict the possibility of new phases in copper halide-pyridazine-H 2O system. A significant feature of this paper is the use of crystal engineering tools, namely, synthons and tectons to interpret the phase diagram of a system. The structure-synthesis correlation discussed here provides chemical insight to evolve a synthetic protocol to interpret and predict the possibility of supramolecular isomers in metal organic solids.

[CuII(pdz)X2], 12; [Cu2 I(pdz)X2], 3-5; [CuI(pdz)X], 68 and [Cu2 I(pdz)3Cl2].3H2O, 9 where pdz = pyridazine, were crystallized from aqueous solution for the first time and their structure elucidation was carried out using X-ray crystallographic techniques. Growth of isostructures and supramolecular isomers in 19 has been interpreted in terms of tectons (IIII).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3
Scheme 4.

Similar content being viewed by others

References

  1. Bernstein J 2002 In Polymorphism in Molecular Crystals (New York: Oxford University Press)

    Google Scholar 

  2. Desiraju G R 1989 In Crystal engineering: The design of organic solids (Amsterdam: Elsevier)

    Google Scholar 

  3. (a) Childs S L and Hagen K S 2002 CrystEngComm 4 265; (b) Diskin-Posner Y, Patra G K and Goldberg I 2002 CrystEngComm 4 296

  4. Black J F B, Davey R J, Gowers R J and Yeoh A 2015 CrystEngComm 17 5139

    Article  CAS  Google Scholar 

  5. (a) Suresh K and Nangia A 2014 Cryst. Growth Des. 14 2945; (b) Swapna B, Maddileti D and Nangia A 2014 Cryst. Growth Des. 14 5991

  6. (a) Sarkar S, Pavan M S, Cherukuvada S and Guru Row T N 2016 Chem. Commun. 52 5820; (b) Bolla G and Nangia A 2016 Chem. Commun. 52 8342; (c) Babu N J, Cherukuvada S, Thakuria R and Nangia A 2010 Cryst. Growth Des. 10 1979

  7. Chen P K, Che Y X, Xue L and Zheng J M 2006 J. Solid State Chem. 179 2656

    Article  CAS  Google Scholar 

  8. Zheng B, Bai J and Zhang Z 2010 CrystEngComm 12 49

    Article  CAS  Google Scholar 

  9. Moulton B and Zaworotko M J 2001 Chem. Rev. 101 1629

    Article  CAS  Google Scholar 

  10. Desiraju G R, Vittal J J and Ramanan A 2011 In Crystal Engineering: A Textbook (Singapore: IISc Press and World Scientific Publishing)

    Book  Google Scholar 

  11. Singh M, Thomas J and Ramanan A 2010 Aust. J. Chem. 63 565

    Article  CAS  Google Scholar 

  12. Singh M, Kumar D, Thomas J and Ramanan A 2010 J. Chem. Sci. 122 757

    Article  CAS  Google Scholar 

  13. (a) Thomas J 2009 Structure-synthesis correlation of phosphomolybdates based solids: Linking molecular units and their solid-state counterparts PhD Thesis (New Delhi: Indian Institute of Technology); (b) Singh M 2011 Crystal Engineering of Metal Complex or Coordination Polymer Templated Polyoxomolybdates: Chemical Insights PhD Thesis (New Delhi: Indian Institute of Technology)

  14. (a) Thomas J and Ramanan A 2008 Cryst. Growth Des. 8 3390; (b) Upreti S and Ramanan A 2007 Cryst. Growth Des. 7 966

  15. Etter M C 1990 Acc. Chem. Res. 23 120

    Article  CAS  Google Scholar 

  16. Desiraju G R 1995 Angew. Chem. Int. Ed. 34 2311

    Article  CAS  Google Scholar 

  17. Davey R J, Allen K, Blagden N, Cross W I, Lieberman H F, Qualye M J, Righini S, Seton L and Tiddy G J T 2002 CrystEngComm 4 257

    Article  CAS  Google Scholar 

  18. Ramanan A and Whittingham M S 2006 Cryst. Growth Des. 6 2419

    Article  CAS  Google Scholar 

  19. (a) Pavani K, Ramanan A and Whittingham M S 2006 J. Mol. Struct. 796 179; (b) Thomas J, Kumar D and Ramanan A 2013 Inorg. Chim. Acta 396 126

  20. (a) Xing K, Fan R, Gao S, Wang X, Du X, Wang P, Fang R and Yang Y 2016 Dalton Trans. 45 4863; (b) Zhang S, Li H, Duan E, Han Z, Li L, Tang J, Shi W and Cheng P 2016 Inorg. Chem. 55 1202; (c) Lu J Y 2003 Coord. Chem. Rev. 246 345; (d) Hoskins B F and Robson R 1990 J. Am. Chem. Soc. 112 1546

  21. Biradha K, Ramanan A and Vittal J J 2009 Cryst. Growth Des. 9 2969

    Article  CAS  Google Scholar 

  22. Kromp T and Sheldrick W S Z 1999 Naturforsch. B. Chem. Sci. 54b 1175

    Google Scholar 

  23. Näther C and Jess I 2003 Inorg. Chem. 42 2968

    Article  Google Scholar 

Download references

Acknowledgements

The work is a part of Ph.D. dissertation of Jency Thomas submitted at Indian Institute of Technology, Delhi, India. A R acknowledges DST, Government of India, for financial support as well as powder and single crystal X-ray diffraction facility to the Department of Chemistry, IIT Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JENCY THOMAS or ARUNACHALAM RAMANAN.

Additional information

Supplementary Information (SI)

Crystallographic information files (CIF) for 19; crystal structure description of 19; figures showing weak interactions in 19; simulated and experimental powder XRD (Figures S8S15); á posteriori analysis of solids reported in literature with pyridazine, pyrimidine and pyrazine (Figures S16S23); results of rietveld refinement for phase quantification of orthorhombic and triclinic phases in 6 and 7 (Figure S24); results of vibrational and thermal analysis (Figures S25S28); crystallographic details for solids 19 (Table S5) are given in the Supplementary Information available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 5.11 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

THOMAS, J., RAMANAN, A. What Triggers Supramolecular Isomerism in Nonmolecular Solids? A case study of Copper Pyridazine Halides. J Chem Sci 128, 1687–1694 (2016). https://doi.org/10.1007/s12039-016-1179-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1179-9

Keywords

Navigation