Skip to main content
Log in

Computational design of Oligo-sulfuranes

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

We studied the effect of electronegativity perturbation on the isolobal behavior of tetra-coordinate hypervalent compounds of S (sulfuranes, SL 4, L is any atom or group which can provide one electron for S-L bonding). Though formally the fragment SL 4 obtained from SL 6 is an isolobal equivalent of CH 2, a qualitative molecular orbital study shows that only SF 2 H 2 with equatorial F atoms is a practical isolobal substitute for CH 2 and can form oligomers, (SF 2 H 2) 2, (14), (SF 2 H 2) 3, (15) and (SF 2 H 2) 4, (16) analogous to ethylene, cyclopropane and cyclobutane, respectively. DFT computations at the B2PLYP/6-311 ++g(d,p), MP2/aug-cc-pVTZ and B3LYP/6-311 ++g(d,p) levels confirm these structures to be minima on the PES. The skeletal S-S bonds in these structures are formed solely by the bonding combination of anti-bonding fragment orbitals of SF 2 H 2. In contrast, per-fluorination, the usual way to stabilize hypervalent structures, is found to have an opposite effect here. Calculations at the same levels show (SF 4) 2, (SF 4) 3, and (SF 4) 4 not to be minima. The highly stable HOMO of SF 4 fragment and large HOMO-LUMO gap makes SF 4 a stable entity, preventing it from oligomerization. Out of the various isomers of SF n H 4−n, n = 0-4, only SF 2 H 2 with equatorial F atoms can form oligomeric sulfuranes. Substitution of F by heavier analogs of the group did not lead to any stable oligomers.

SF2H2 with equatorial F atoms is isolobal to CH2 and forms the oligomers (SF2H2)2, (SF2H2)3, and (SF2H2)4 analogous to ethylene, cyclopropane and cyclobutane, respectively. The skeletal S-S bonds are formed by the overlap of antibonding fragment orbitals of SF2H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Lewis G N 1916 J. Am. Chem. Soc. 38 762

    Article  CAS  Google Scholar 

  2. Priyakumari C P and Jemmis E D 2013 J. Am. Chem. Soc. 135 16026

    Article  CAS  Google Scholar 

  3. Pooppanal S S 2009 Synlett 2009 850

    Article  Google Scholar 

  4. Adzima L J, Chiang C C, Paul I C and Martin J C 1978 J. Am. Chem. Soc. 100 953

    Article  CAS  Google Scholar 

  5. Franz J A and Martin J C 1975 J. Am. Chem. Soc. 97 583

    Article  CAS  Google Scholar 

  6. Perozzi E F, Martin J C and Paul I C 1974 J. Am. Chem. Soc. 96 6735

    Article  CAS  Google Scholar 

  7. Martin J C and Perozzi E F 1974 J. Am. Chem. Soc. 96 3155

    Article  CAS  Google Scholar 

  8. Martin J C, Franz J A and Arhart R J 1974 J. Am. Chem. Soc. 96 4604

    Article  CAS  Google Scholar 

  9. Franz J A and Martin J C 1973 J. Am. Chem. Soc. 95 2017

    Article  CAS  Google Scholar 

  10. Arhart R J and Martin J C 1972 J. Am. Chem. Soc. 94 5003

    Article  CAS  Google Scholar 

  11. Wittkopp A, Prall M, Schreiner P R and Schaefer I. H F 2000 Phys. Chem. Chem. Phys. 2 2239

    Article  CAS  Google Scholar 

  12. Chen M M L and Hoffmann R 1976 J. Am. Chem. Soc. 98 1647

    Article  CAS  Google Scholar 

  13. Hoffmann R, Howell J M and Muetterties E L 1972 J. Am. Chem. Soc. 94 3047

    Article  CAS  Google Scholar 

  14. Hoffmann R 1982 Angew. Chem., Int. Ed. Engl. 21 711

    Article  Google Scholar 

  15. Zaitsev K V, Churakov A V, Poleshchuk O K, Oprunenko Y F, Zaitseva G S and Karlov S S 2014 Dalton Trans 43 6605

    Article  CAS  Google Scholar 

  16. Kano N, Tsukada S, Shibata Y, Kawashima T, Sato H, Guo J -D and Nagase S 2014 Organometallics 34 56

    Article  Google Scholar 

  17. Kano N, Sasaki K, Miyake H and Kawashima T 2014 Organometallics 33 2358

    Article  CAS  Google Scholar 

  18. Kano N, Miyake H, Sasaki K, Kawashima T, Mizorogi N and Nagase S 2010 Nat. Chem. 2 112

    Article  CAS  Google Scholar 

  19. Kano N, Nakagawa N, Shinozaki Y, Kawashima T, Sato Y, Naruse Y and Inagaki S 2005 Organometallics 24 2823

    Article  CAS  Google Scholar 

  20. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta Jr. J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J and Fox D J, 2009 Gaussian 09, Revision D.01 (Gaussian, Inc.: Wallingford CT)

  21. Grimme S 2006 J. Chem. Phys. 124 034108

    Article  Google Scholar 

  22. Becke A D 1993 J. Chem. Phys. 98 5648

    Article  CAS  Google Scholar 

  23. Kendall R A, Dunning T H and Harrison R J 1992 J. Chem. Phys. 96 6796

    Article  CAS  Google Scholar 

  24. Dunning T H 1989 J. Chem. Phys. 90 1007

    Article  CAS  Google Scholar 

  25. Head-Gordon M, Pople J A and Frisch M 1988 J. Chem. Phys. Lett. 153 503

    Article  CAS  Google Scholar 

  26. Steudel Y and Steudel R 2003 Eur. J. Inorg. Chem. 2003 3798

    Article  Google Scholar 

  27. Ignat’ev I S and Schaefer H F 1992 J. Phys. Chem. 96 6247

    Article  Google Scholar 

  28. Gleiter R and Veillard A 1976 Chem. Phys. Lett. 37 33

    Article  CAS  Google Scholar 

  29. Hoffmann R, Schleyer P v R and Schaefer H F 2008 Angew. Chem., Int. Ed. 47 7164

    Article  Google Scholar 

  30. Bao X, Zhou X, Lovitt C F, Venkatraman A, Hrovat D A, Gleiter R, Hoffmann R and Borden W T 2012 J. Am. Chem. Soc. 134 10259

    Article  CAS  Google Scholar 

  31. Cui Z-h, Lischka H, Beneberu H Z and Kertesz M 2014 J. Am. Chem. Soc. 136 12958

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CPK and EDJ thank IISER Thiruvananthapuram, IISc Bangalore and CMSD, University of Hyderabad for providing computational facilities. CPK thanks CSIR-India for research fellowship. DST is acknowledged for the J C Bose fellowship to EDJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ELUVATHINGAL D JEMMIS.

Additional information

Supplementary Information (SI)

Coordinates of the structures are given in the Supporting Information, available at www.ias.ac.in/chemsci.

Special Issue on CHEMICAL BONDING

Celebrating 100 years of Lewis Chemical Bond

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 553 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PRIYAKUMARI, C.P., JEMMIS, E.D. Computational design of Oligo-sulfuranes. J Chem Sci 128, 1663–1669 (2016). https://doi.org/10.1007/s12039-016-1157-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1157-2

Keywords

Navigation