Skip to main content
Log in

Ba/ZrO2 nanoparticles as efficient heterogeneous base catalyst for the synthesis of β-nitro alcohols and 2-amino 2-chromenes

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Zirconia nanoparticles were synthesized by precipitation, urea hydrolysis, amorphous citrate and combustion synthesis methods. The zirconia surface was subsequently modified by grafting Ba 2+ species. The Ba 2+ modified zirconia (Ba/ZrO 2) materials were characterized using XRD, Fourier analysis, UV-vis-DRS, FESEM and HRTEM techniques. XRD study indicated selective stabilization of the tetragonal phase of zirconia in the presence of Ba 2+ species. Fourier line profile analysis of the XRD peaks revealed that the average crystallite size of the zirconia nanoparticles is in the range of 5-15 nm. The surface area, basicity and barium content of the material depend strongly on the method of synthesis. The Ba/ZrO 2 catalyst prepared by urea hydrolysis method exhibited higher surface area and barium content compared to other samples. The catalytic activity of the Ba/ZrO 2 catalyst was evaluated for synthesis of β-nitro alcohols and 2-amino 2-chromenes. The β-nitro alcohols were synthesized by condensation of aryl aldehydes and nitromethane. Similarly, the 2-amino 2-chromenes were synthesized by condensation of arylaldehydes, α-naphthol and malononitrile. The Ba/ZrO 2 catalyst was found to be highly efficient for synthesis of both classes of compounds providing excellent yield and purity of the products.

The surface modification of zirconia nanoparticles was carried out by grafting Ba2+ species to generate a heterogeneous catalyst which exhibits efficient catalytic activity for base catalyzed synthesis of b-nitro alcohols and 2-amino 2-chromenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Scheme 1.
Figure 9
Scheme 2.

Similar content being viewed by others

References

  1. Ono Y and Hattori H 2012 In Solid Base Catalysis (Germany: Springer Verlag)

  2. Busca G 2010 Chem. Rev 110 2217

    Article  CAS  Google Scholar 

  3. Corma A and Iborra S 2006 Adv. Catal. 49 239

    CAS  Google Scholar 

  4. Kumar D, Mishra B G, Reddy V B, Rana R K and Varma R S 2007 Tetrahedron 63 3093

    Article  CAS  Google Scholar 

  5. Samantaray S, Pradhan D K, Hota G and Mishra B G 2012 Chem. Eng. J. 193 1

    Article  Google Scholar 

  6. Urbano F J, Aramendía M A, Marinas A and Marinas J M 2009 J. Catal. 268 79

    Article  CAS  Google Scholar 

  7. Zhang Q, Zhang Y, Li H, Gao C and Zhao Y 2013 Appl. Catal. A 466 233

    Article  CAS  Google Scholar 

  8. Choudhary V R and Karmakar A J 2003 Proc. Indian Acad. Sci. (J. Chem. Sci.) 115 281

    Article  CAS  Google Scholar 

  9. Ranga Rao G and Sahu H R 2001 Proc. Indian Acad. Sci. (J. Chem. Sci.) 113 651

    Article  Google Scholar 

  10. Tian X, Zeng Y, Xiao T, Yang C, Wang Y and Zhang S 2011 Micropor. Mesopor. Mater. 143 357

    Article  CAS  Google Scholar 

  11. Shen W, Tompsett G A, Hammond K D, Xing R, Dogan F, Grey C P, Conner W C, Auerbach S M and Huber G W 2011 Appl. Catal. A 392 57

    Article  CAS  Google Scholar 

  12. Eta V, Arvela P M, Wärnå J, Salmi T, Mikkol J and Murzin D 2011 Appl. Catal. A 404 39

    CAS  Google Scholar 

  13. Xia S, Guo X, Mao D, Shi Z, Wu G and Lu G 2014 RSC Adv 4 51

    Google Scholar 

  14. Zhang Q, Zhang Y, Li H, Gao C and Zhao Y 2013 Appl. Catal. A 233 239

    Google Scholar 

  15. Wang C, Sun N, Kang M, Wen X, Zhao N, Xiao F, Wei W, Zhaod T and Sun Y 2013 Catal. Sci. Tech. 3 2435

    Article  CAS  Google Scholar 

  16. Gong L, Sun L, Sun Y, Li T and Liu X 2011 J. Phys. Chem. C 115 11633

    Article  CAS  Google Scholar 

  17. Hamad B, Perard A, Figueras F, Prakash S and Essayem N 2010 J. Catal. 269 1

    Article  CAS  Google Scholar 

  18. Luzzio F A 2001 Tetrahedron 57 915

    Article  CAS  Google Scholar 

  19. Bures J and Vilarrasa J 2008 Tetrahedron Lett. 49 441

    Article  CAS  Google Scholar 

  20. Ren Y and Cai C 2007 Catal. Lett. 118 134

    Article  CAS  Google Scholar 

  21. Wang Q and Shantz D F 2010 J. Catal. 271 170

    Article  CAS  Google Scholar 

  22. Biradar A V, Sharma K K and Asefa T 2010 Appl. Catal. A 389 19

    Article  CAS  Google Scholar 

  23. Dhahagani K, Rajesh J, Kannan R and Rajagopal G 2011 Tetrahedron Asym. 22 857

    Article  CAS  Google Scholar 

  24. Kidwai M, Saxena S, Khan M K R and Thukral S S 2005 Bioorg. Med. Chem. Lett. 15 4295

    Article  CAS  Google Scholar 

  25. Majumdar N, Paul N D, Mandal S, Bruin B d. and Wulff W D 2015 ACS Catal. 5 2329

    Article  CAS  Google Scholar 

  26. Varma R S and Dahiya R 1998 J. Org. Chem. 63 8038

    Article  CAS  Google Scholar 

  27. Solhy A, Elmakssoudi A, Tahir R, Karkouri M, Larzek M, Bousmina M and Zahouily M 2010 Green Chem. 12 2261

    Article  CAS  Google Scholar 

  28. Golari N, Rahimizadeh M, Bakavoli M and Rezaei-Seresht E 2015 Res. Chem. Intermed. 41 6023

    Article  CAS  Google Scholar 

  29. Ballini R, Bosica G, Conforti M L, Maggi R, Mazzacani A, Righic P and Sartori G 2001 Tetrahedron 57 1395

    Article  CAS  Google Scholar 

  30. Gong K, Wang H L, Fang D and Liu Z L 2008 Catal. Commun. 9 650

    Article  CAS  Google Scholar 

  31. Chen L, Huang X J, Li Y Q, Zhou M Y and Zheng W J 2009 Monatsh. Chem. 140 45

    Article  CAS  Google Scholar 

  32. Zhen Y, Lin H, Wanga S and Tao M 2014 RSC Adv. 4 26122

    Article  CAS  Google Scholar 

  33. Sangsuwan R, Sanger S, Aree T, Mahidol C, Ruchirawatabd S and Kittakoop P 2014 RSC Adv. 4 13708

    Article  CAS  Google Scholar 

  34. Jain S R, Adiga K C and Verneker V R 1981 Combust. Flame 40 71

    Article  CAS  Google Scholar 

  35. Warren B E and Averbach B L 1950 J. Appl. Phys. 21 595

    Article  CAS  Google Scholar 

  36. Ranga Rao G, Sahu H R and Mishra B G 2003 React. Kinet. Catal. Lett. 78 151

    Article  CAS  Google Scholar 

  37. Samantaray S, Mishra B G, Pradhan D K and Hota G 2011 Ceram. Int. 37 3101

    Article  CAS  Google Scholar 

  38. Figueroa S, Desimoni J, Rivas P C, Cervera M M and Caracoche M C 2005 Chem. Mater. 17 3486

    Article  CAS  Google Scholar 

  39. Chang S M and Doong R N 2005 Chem. Mater. 17 4837

    Article  CAS  Google Scholar 

  40. Chen L, Hu J and Richards R M 2008 Chem. Phys. Chem. 9 1069

    CAS  Google Scholar 

  41. Navío J A, Hidalgo M C, Colón G, Botta S G and Litter M I 2001 Langmuir 17 202

    Article  Google Scholar 

  42. Samantaray S and Mishra B G 2011 J. Mol. Catal. A: Chem. 339 92

    Article  CAS  Google Scholar 

  43. Pradhan S and Mishra B G 2015 RSC Adv. 5 86179

    Article  CAS  Google Scholar 

  44. El-Sharkawy E A, Khder A S and Ahmed A I 2007 Micropor. Mesopor. Mater. 102 128

    Article  CAS  Google Scholar 

  45. Balzar D and Ledbetter H 1993 J. Appl. Crystallogr. 26 97

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Board of Research in Nuclear Sciences (BRNS), Mumbai for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B G MISHRA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PRADHAN, S., SWARNIMA, K. & MISHRA, B.G. Ba/ZrO2 nanoparticles as efficient heterogeneous base catalyst for the synthesis of β-nitro alcohols and 2-amino 2-chromenes. J Chem Sci 128, 1119–1130 (2016). https://doi.org/10.1007/s12039-016-1104-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1104-2

Keywords

Navigation