Skip to main content
Log in

Synthesis, crystal structures, spectroscopic characterization and in vitro antidiabetic studies of new Schiff base Copper(II) complexes

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Two new Schiff base copper(II) complexes, [CuL1(tmen)] (1) and [Cu\(_{\mathrm {2}}\mathrm {L}_{\text {2}}^{\text {2}}\) (tmen)] (2) {where, H\(_{\mathrm {2}}\textit {L}^{\mathrm {1}}=\) N-(salicylidene)-L-valine, H\(_{\mathrm {2}}\textit {L}^{\mathrm {2}}=\) N-(3,5-dichlorosalicylidene)-L-valine and tmen = N,N,N\(^{\prime }\),N\(^{\prime }\)-tetramethylethylene-1,2-diamine} have been synthesized and characterized by molar conductance, elemental analyses, VSM-RT, UV-Vis, FTIR, EPR, and CD spectra. Both the complexes were structurally characterized by single crystal XRD. The crystal structure of complex 1 displays a distorted square pyramidal geometry in which Schiff base is coordinated to the Cu(II) ion via ONO-donor in the axial mode, whereas, the chelating diamine displays axial and equatorial mode of binding via NN-donor atoms. The crystal structure of the complex 2 reveals a syn-anti mode of carboxylate bridged dinuclear complex, in which, the coordination geometry around Cu(1) is square pyramid and distorted square planar around Cu(2). The target complexes were screened for in vitro antidiabetic activity. Both the complexes showed good inhibitory activity for α-amylase and α-glucosidase.

Two new Schiff base copper(II) complexes, [CuL1(tmen)] (1) and [Cu2 \(L_{2}^{2}\) (tmen)] (2) {where, H2L1 = N-(salicylidene)-L-valine, H2L2 = N-(3, 5-dichlorosalicylidene)-L-valine and tmen = N, N, N’, N’-tetramethylethylene-1, 2-diamine} have been synthesized and characterized by molar conductance, elemental analyses, VSM-RT, UV-Vis, FTIR, EPR, and CD spectra. Both the complexes were structurally characterized by single crystal XRD. Both the complexes showed good inhibitory activity for α-amylase and α-glucosidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bailey C J and Day C 1989 Diabetes Care 12 553

    Article  CAS  Google Scholar 

  2. Sara K S F, Peter R F, Day C and Clifford J B 1991 Proc. Nutr. Soc. 50 641

    Article  Google Scholar 

  3. Coulson L and Dandona P 1980 Diabetes 29 665

    Article  Google Scholar 

  4. Pandeya K B, Tripathi I P, Mishra M K, Dwivedi N, Pardhi P, Kamal P, Gupta Y, Dwivedi N and Mishra C 2013 Int. J. Org. Chem. 3 1

    Article  CAS  Google Scholar 

  5. Inamo M, Kumagai H, Harada U, Itoh S, Iwarsuki S, Ishihara K and Takagi H 1703 Dalton Trans.

  6. Harris E D 2003 Crit. Rev. Clin. Lab. Sci. 40 547

    Article  CAS  Google Scholar 

  7. Sorenson J R 1989 J. Prog. Med. Chem. 26 437

    Article  CAS  Google Scholar 

  8. Li X, Fang C, Zong Z, Cui L, Bi C and Fan Y 2015 Inorg. Chim. Acta 432 198

    Article  CAS  Google Scholar 

  9. Perumal G, Jayaram R and Aziz K R 2014 J. Chem. Sci. 126 783

    Article  Google Scholar 

  10. Akhil R C, Pattubala A N A, Bidyut K S and Anitha M T 2002 J. Chem. Sci. 114 391

    Article  Google Scholar 

  11. Katwal R, Kaur H and Kapur B K 2013 Sci. Rev. Chem. Commun. 3 1

    CAS  Google Scholar 

  12. Zeinab M, Zhara A M B and Behrouz N 2013 Polyhedron 53 7

    Google Scholar 

  13. García-Raso Á, Juan F J, Adela Lápez-Zafra, Jose A, Castro, Araceli C, Ignasi M and Elies M 2003 Polyhedron 22 403

    Article  Google Scholar 

  14. Reddy P A N, Nethaji M and Chakravarty A R 2004 Eur. J. Inorg. Chem. 1440

  15. Samya B, Akanksha D, Sesha M K, Basudev M, Sanjoy M, Kumar A., Anjali K and Chakravarty A R 2016 J. Chem. Sci. 128 165

    Article  Google Scholar 

  16. Rama I and Selvameena R 2015 J. Chem. Sci. 127 671

    Article  CAS  Google Scholar 

  17. Iran S, Yousef E S, Brahimipour M. S, Maryam M, Mehdi A, Hadi A R and Giuseppe B 2015 J. Chem. Sci. 127 2193

    Article  Google Scholar 

  18. Jing H, Feng Y B, Hai Yan Z, Yong Heng X, Xiao Qing Z and Mao Fa G 2009 Chinese Sci. Bull. 54 3508

    Google Scholar 

  19. Vančo J, Marek J, Trávníčk Z, Račanská E, Muselík J and Švajlenová O 2008 J. Inorg. Biochem. 102 595

    Article  Google Scholar 

  20. Zhi-Qiang F, Xiao-Li Y, Yuan-Feng Y and Lin-Yun H 2014 Bull. Korean Chem. Soc. 35 1121

    Article  Google Scholar 

  21. Saurabh D and Nidhi B 2013 Int. J. Curr. Pharm. Res. 5 6

    Google Scholar 

  22. (a) Sheldrick G M 1997 SHELXL-97, In Program for the Solution of Crystal Structures; (University of Göttingen:, Göttingen, Germany); (b) Sheldrick G M 1997 SHELXS-97 In Program for the Crystal Structure Refinement; (University of Göttingen: Göttingen, Germany)

  23. Gayathri G A and Gayathri M 2014 Int. J. Pharm. Pharm. Sci. 6 362

    Google Scholar 

  24. Geary W J 1971 Coord. Chem. Rev. 7 81

    Article  CAS  Google Scholar 

  25. Naskar J P, Biswas C, Lu L and Zhu M 2011 J. Chem. Crystallogr. 41 502

    Article  CAS  Google Scholar 

  26. Anthony W A and Nageswara R T 1984 J. Chem. Soc. Dalton Trans. 1349

  27. Reddy P A N, Nethaji M and Chakravarty A R 2002 Inorg. Chim. Acta 337 450

    Article  CAS  Google Scholar 

  28. Dhar S, Nethaji M and Chakravarty A R 2005 Inorg. Chim. Acta 358 2437

    Article  CAS  Google Scholar 

  29. Xing Li M, Shao M, Dai H, Li An B, Cong Lu W, Zhu Y and Xia Du C 2005 Chin. Chem. Let. 16 1405

    Google Scholar 

  30. Choi K. -Y. 2008 J. Chem. Crystallogr. 38 53

    Article  CAS  Google Scholar 

  31. Nakamoto K 1986 In Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed. (New York: John Wiley)

  32. Valko M, Pelikan P, Biskupic S and Mazur M 1990 Chem. Papers 44 805

    CAS  Google Scholar 

  33. Hathaway B J and Billing D E 1970 Coord. Chem. Rev. 5 1

    Article  CAS  Google Scholar 

  34. Geetha K and Santhalakshmi S 2014 Res. J. Chem. Sci. 4 68

    CAS  Google Scholar 

  35. Edward S, Andrzej S, Magdalena B and Erik L 2002 Polyhedron 21 2711

    Article  Google Scholar 

  36. Pradeep C P, Zacharias P S and Das S K 2005 J. Chem. Sci. 117 133

    Article  CAS  Google Scholar 

  37. Pessoa J C, Calhorda M J, Cavaco I, Costa P J, Correia I, Costa D, Vilas-Boas L F, Félix V, Gillard R D, Henriques R T and Wiggins R 2004 Dalton. Trans. 18 2855

    Article  Google Scholar 

  38. Szlyk E, Surdykowski A, Barwiolek M and Larsen E 2002 Polyhedron 21 2711

    Article  CAS  Google Scholar 

  39. Tao W, Xiao-Peng Z, Cheng-Hui L, Petr B, Yi-Zhi L and Xiao-Zeng Y 2012 Chirality 24 451

    Article  Google Scholar 

  40. Ling W, Jun W, Cai F Z, Yi J L, Lei Q C, Jun F and Hui Z 2010 Sci. China Chem. 53 1255

    Article  Google Scholar 

  41. Walter J R M, Uriu-Hare J Y, Olin K L, Oster M H, Anawalt B D and Critchfield J W 1991 Diabetes Care 14 1050

    Article  Google Scholar 

  42. Kubisch H M, Wang J, Luche R, Carlson E, Bray T M and Epstein C J 1994 Proc. Natl. Acad. Sci. 91 9956

    Article  CAS  Google Scholar 

  43. Abdul-Ghani A S, Abu-Hijleh A L, Nahas N and Amin R 1996 Biol. Trac. Ele. Res. 54 143

    Article  CAS  Google Scholar 

  44. Yasumatsu N, Yoshikawa Y, Adachi Y and Sakurai H 2007 Bioorg. Med. Chem. 15 4917

    Article  CAS  Google Scholar 

  45. Barthel A, Ostrakhovitch E A, Walter P L, Kampkötter A and Klotz L O 2007 Arch. Biochem. Biophy. 463 175

    Article  CAS  Google Scholar 

  46. Ostrakhovitch E A and Cherian M G 2004 Arch. Biochem. Biophy. 423 351

    Article  CAS  Google Scholar 

  47. Koyasu M, Ishili H, Watarai M, Takemoto K and Inden Y 2010 Clin. Theor. 32 1610

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to D.K.M. College for Women and Muthurangam Govt. Arts College, Vellore. S. S. L. thanks Dr. K. Gunasekaran, Department of Crystallography and Biophysics, University of Madras and Dr. Sivasankar Chinnappan, Department of Chemistry, Pondicherry University for single crystal XRD studies; VIT, Vellore, for antidiabetic studies; and Mr. J. Jayamani, CSIR-Senior Research Fellow, Bioorganic Chemistry Laboratory, CSIR-CLRI, Chennai, for his help in UV-Vis. and CD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KANNAPPAN GEETHA.

Additional information

Supplementary Information (SI)

CCDC 933779 (for complex 1) and 919273 (for complex 2) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html. Crystal data and structure refinement for the copper(II) complexes 1 and 2 (table S1), Selected bond lengths (Å) and angles (deg) for complexes 1 and 2 (table S2), Diffusion of glucose through dialysis membrane to the external solution concentration of glucose (mg/dL) (table S3), Relative movement of glucose through dialysis membrane over 180 minutes (table S4), Inhibitory activity of complexes at varying concentrations on α-amylase and α-glucosidase compaed with standard drug acarbose table S5), FTIR (figures S1, S2), ESR (figures S3, S4) and electronic absorption spectra (figures S5, S6) of the complexes 1 and 2 are given in Supplementary Information, available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 176 KB)

(DOC 58.0 KB)

(DOC 53.5 KB)

(PDF 147 KB)

(PDF 148 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LAKSHMI, S.S., GEETHA, K., GAYATHRI, M. et al. Synthesis, crystal structures, spectroscopic characterization and in vitro antidiabetic studies of new Schiff base Copper(II) complexes. J Chem Sci 128, 1095–1102 (2016). https://doi.org/10.1007/s12039-016-1099-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1099-8

Keywords

Navigation