Skip to main content
Log in

X-H⋯C hydrogen bonds in n-alkane-HX (X = F, OH) complexes are stronger than C-H⋯X hydrogen bonds

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Computational study of X-H⋯C and C-H⋯X hydrogen bonds in n-alkane-HX complexes (X =F,OH, alkane =propane, butane, pentane) has been carried out in this work. Ab initio and density functional theories were used for this study. For n-alkane-H2O complexes both O⋯H-C and O–H⋯C hydrogen bonded complex have been found, while for n-alkane-HF complexes, our attempt to optimize F⋯H-C H-bond was not successful. Like most of the hydrogen bonded systems, strong correlation between binding energy and stretching frequency of H-F and O-H stretching mode was observed. The values of electron density and Laplacian of electron density are within the accepted range for hydrogen bonds. In all these cases, X-H⋯C hydrogen bonds are found to be stronger than C-H⋯X hydrogen bonds.

O–H⋯C hydrogen bond in n-butane represents n-alkane-HX (X = F, OH) complexes. X-H⋯C hydrogen bonds are found to be stronger than C-H⋯X hydrogen bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Szczçśniak M M, Chałasiński G, Cybulski S M and Cieplak P 1993 J. Chem. Phys. 98 3078

    Article  Google Scholar 

  2. Novoa J J and Tarron B 1991 J. Chem. Phys. 95 5179

    Article  CAS  Google Scholar 

  3. Rovira C and Novoa J J 1997 Chem. Phys. Lett. 279 140

    Article  CAS  Google Scholar 

  4. Kozmutza C, Varga I and Udvardi L 2003 Theochem 666–667 95

    Article  Google Scholar 

  5. Hartman M, Wetmore S D and Radom L 2001 J. Phys. Chem. A 105 4470

    Article  Google Scholar 

  6. Novoa J J, Planas M and Carme Rovira M 1996 Chem. Phys. Lett. 251 33

    Article  CAS  Google Scholar 

  7. Ojo O A and Szalewicz K 2005 J. Chem. Phys. 123 134311

    Article  Google Scholar 

  8. Suenram R D, Fraser G T, Lovas F J and Kawashima Y J 1994 Chem. Phys. 101 7230

    CAS  Google Scholar 

  9. Raghavendra B and Arunan E 2008 Chem. Phys. Lett. 467 37

    Article  CAS  Google Scholar 

  10. Pauling L 1960 In The Nature of the Chemical Bond and the Structure of Molecules and Crystals, An Introduction to Modern Structural Chemistry (NY: Cornell University Press Ithaca) p 478

  11. Raghavendra B and Arunan E 2007 J. Phys. Chem. A 111 9699

    Article  CAS  Google Scholar 

  12. Hammerum S 2009 J. Am. Chem. Soc. 131 8627

    Article  CAS  Google Scholar 

  13. Arunan E, Desiraju G R, Klein R A, Sadlej J, Scheiner S, Alkorta I, Clary D C, Crabtree R H, Dannenberg J J, Hobza P, Kjaergaard H G, Legon A C, Mennucci B and Nesbitt D J 2011 Pure Appl. Chem. 83 1619

    CAS  Google Scholar 

  14. Arunan E, Desiraju G R, Klein R A, Sadlej J, Scheiner S, Alkorta I, Clary D C, Crabtree R H, Dannenberg J J, Hobza P, Kjaergaard H G, Legon A C, Mennucci B and Nesbitt D J 2011 Pure Appl. Chem. 83 1637

    CAS  Google Scholar 

  15. Davis S R and Andrews L 1987 J. Am. Chem. Soc. 109 4768

    Article  CAS  Google Scholar 

  16. Bonaccorsi R, Scrocco E and Tomasi J 1970 J. Chem. Phys. 52 5270

    Article  CAS  Google Scholar 

  17. Politzer P 1981 In Chemical Applications of Atomic and Molecular Electrostatic Potential D G Truhlar (ed.) (New York: Plenum), pp. 1–6

  18. Gadre S R and Shirsat R N 2000 In Electrostatics of Atoms and Molecules (Hyderabad: Universities Press (India) Ltd.) p. 63

  19. Politzer P, Murray J S and Clark T 2010 Phys. Chem. Chem. Phys. 12 7748

    Article  CAS  Google Scholar 

  20. Gadre S R and Bhadane P K 1997 J. Chem. Phys. 107 5625

    Article  CAS  Google Scholar 

  21. Gadre S R and Pathak R K 1990 Proc. Indian Acad. Sci. (J. Chem. Sci.) 102 189

    CAS  Google Scholar 

  22. Chandra A K, Pal S, Limaye A C and Gadre S R 1995 Chem. Phys. Lett. 247 95

    Article  CAS  Google Scholar 

  23. Gadre S R and Pingale S S 1998 J. Am. Chem. Soc. 120 7056

    Article  CAS  Google Scholar 

  24. Gadre S R and Bhadane P K 1998 Theor. Chem. Acc. 100 300

    Article  CAS  Google Scholar 

  25. Mani D and Arunan E 2013 Phys. Chem. Chem. Phys. 15 14377

    Article  CAS  Google Scholar 

  26. Ambrosetti A, Costanzo F and Silvestrelli P L 2011 J. Phys. Chem. C 115 12121

    Article  CAS  Google Scholar 

  27. Olesen S G and Hammerum S 2009 J. Phys. Chem. A 113 7940

    Article  CAS  Google Scholar 

  28. Bader R F W 1990 In Atoms in Molecules: A Quantum Theory (Oxford: Clarendon Press)

  29. Koch U and Popelier P L A 1995 J. Phys. Chem. 99 9747

    Article  CAS  Google Scholar 

  30. Chr M. and Plesset M S 1934 Phys. Rev. 46 618

    Article  Google Scholar 

  31. Pople J A, Raghavachari K, Schlegel H B and Binkley J S 1979 Int. J. Quantum Chem., Quant. Chem. Symp. S13 225

    Google Scholar 

  32. Head-Gordon M, Pople J A and Frisch M J 1988 Chem. Phys. Lett. 153 503

    Article  CAS  Google Scholar 

  33. Becke A D 1993 J. Chem. Phys. 98 5648

    Article  CAS  Google Scholar 

  34. Lee C, Yang W and Parr R 1988 Phys. Rev. B 37 785

    Article  CAS  Google Scholar 

  35. Stephens P J, Devlin F J, Chabalowski C F and Frisch M J 1994 J. Phys. Chem. 98 11623

    Article  CAS  Google Scholar 

  36. Frisch M J, Pople J A and Stephen Binkley J 1984 J. Chem. Phys. 80 3265

    Article  CAS  Google Scholar 

  37. Zhao Y, Schultz N E and Truhlar D G 2006 J. Chem. Theory Comput. 2 364

    Article  Google Scholar 

  38. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A J., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara K, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A, Gaussian 03, revision E.01, Gaussian, Inc, Wallingford, CT (2004)

  39. Boys S B and Bernardi F 1970 Mol. Phys. 19 553

    Article  CAS  Google Scholar 

  40. Biegler-Konig F, Schonbohm J, Derdau R, Bayles D and Bader R F W, AIM 2000, version 1, Büro für Innovative Software, Bielefeld, Germany (2000)

  41. Dennington R, Keith T and Millam J, GaussView, Version 5, Semichem Inc., Shawnee Mission KS (2009)

  42. Bader R F W, Carroll M T, Cheeseman J R and Chang C 1987 J. Am. Chem. Soc. 109 7968

    Article  CAS  Google Scholar 

  43. Lu T and Chen F 2012 J. Comput. Chem. 33 580

    Article  Google Scholar 

  44. Huang Z Z and Miller R E 1988 J. Phys. Chem. 92 46

    Article  CAS  Google Scholar 

  45. Merrit J M, Rudic S and Miller R E 2006 J. Chem. Phys. 124 084301

    Article  Google Scholar 

  46. Bulychev V P, Gromova E I and Tokhadge K G 2004 Opt. Spectrosc. 96 774

    Article  CAS  Google Scholar 

  47. Sousa S F, Fernandes P A and Ramos M J 2007 J. Phys. Chem. A 111 10439

    Article  CAS  Google Scholar 

  48. http://www.gaussian.com/g_whitepap/thermo.htm

  49. Shahi A and Arunan E 2014 Phys. Chem. Chem. Phys. 16 22935

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RP thanks Academy of Science for Developing World for TWAS-UNESCO Associateship, Prof. Rangarajan, the then Chairman, International Relation Cell, Indian Institute of Science and all the lab-members of Prof. Arunan’s laboratory. We thank the Supercomputer Education Research Centre at the Indian Institute of Science for computational facilities. RP would like to acknowledge Prof E Krishnakumar and Tata Institute of Fundamental Research (TIFR), Mumbai, India, for the visiting scientist position in January 2013 and January 2015 where the final form of this manuscript was prepared and revised. RP also acknowledges Centre for Science and Technology of the Non-Aligned and Other Developing Countries (NAM S&T Centre), New Delhi, for providing travel grants to visit TIFR in January 2015 and Dr. Leela Pradhan Joshi, Department of Physics, Amrit Campus, Tribhuvan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R PARAJULI.

Additional information

Supplementary Information

Supplementary information is available at www.ias.ac.in/chemsci. In table S1, coordinate of propane optimized at B3LYP/6-311 ++g** is given. Positions of maximum and minimum values of ESPs and the values of ESPs are given in S2. The corresponding values for butane and pentane are given in tables S3, S4, S5 and S6, respectively. Some relevant parameters optimized with M05-2X/6-311 ++G** level of theory of the complex are presented in tables S7 and S8. Penetration parameters, bonding radius of acceptor, non-bonding radius of hydrogen atom, bonding radius of hydrogen atom are given in table S9. Changes in atomic volumes, populations, and energies are given in tables S10, S11 and S12, respectively. In table S13, changes in atomic first moments of the “H” of F-H⋯alkane complexes are given. The optimized structure of Water⋯alkane complex at B3LYP/6-311 ++g** level of theory is given in figure S1.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 286 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PARAJULI, R., ARUNAN, E. X-H⋯C hydrogen bonds in n-alkane-HX (X = F, OH) complexes are stronger than C-H⋯X hydrogen bonds. J Chem Sci 127, 1035–1045 (2015). https://doi.org/10.1007/s12039-015-0861-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0861-7

Keywords

Navigation