Skip to main content
Log in

Functionalization of N 2 to NH 3 via direct N ≡ N bond cleavage using M(III)(NMe 2 ) 3 (M=W/Mo): A theoretical study

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Atmospheric N2 can be cleaved directly to yield metal-nitride (before proceeding to the functionalization of N α of coordinated N2) and subsequently functionalized to ammonia using M(III)(NMe2)3 (M = W/Mo) as a catalyst, and suitable proton and electron sources. The calculated energies of thermodynamic and kinetic states of the various intermediates and transition states in the reaction coordinate to yield ammonia confirmed the viability of the proposed reaction pathway. Rationale of different pathways have been examined and discussed in detail. Changes in the structural features of the catalyst and some important intermediates and transition states have also been examined.

N2 can be cleaved directly to form nitride complex and subsequently can be converted to ammonia in the presence of protons and electrons using M(III)(NMe2)3 (M = Mo/W) in a homogeneous solution under normal experimental conditions. The proposed pathway seems to be feasible based on the calculated thermodynamic and kinetic barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Scheme 3
Scheme 4
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chatt J, Dilworth J R and Richards R L 1978 Chem. Rev. 78 589

  2. Gambarotta S and Scott J 2004 Angew. Chem. Int. Ed. 43 5298

  3. Ohki Y and Fryzuk M D 2007 Angew. Chem. Int. Ed. 46 3180

  4. Schrock R R 2008 Angew. Chem. Int. Ed. 47 5512

  5. Hidai M and Mizobe Y 1995 Chem. Rev. 95 1115

  6. MacKay B A and Fryzuk M D 2004 Chem. Rev. 104 385

  7. Bazhenova T A and Shilov A E 1995 Coord. Chem. Rev. 144 69

  8. Fryzuk M D and Johnson S A 2000 Coord. Chem. Rev. 200–202 379

  9. Gambarotta S 1995 J. Organomet. Chem. 500 117

  10. Jia H–P and Quadrelli E A 2014 Chem. Soc. Rev. 43 547

  11. Sivasankar C, Baskaran S, Tamizmani M and Ramakrishna K 2014 J. Organomet. Chem. 752 44

  12. Tanabe Y and Nishibayashi Y 2013 Coord. Chem. Rev. 257 2551

  13. Hinrichsen S, Broda H, Gradert C, Söncksen L and Tuczek F 2012 Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 108 17

  14. Burgess B K and Lowe D J 1996 Chem. Rev. 96 2983

  15. Eady R R 1996 Chem. Rev. 96 3013

  16. Howard J B and Rees D C 1996 Chem. Rev. 96 2965

  17. Howard J B and Rees D C 2006 Proc. Natl. Acad. Sci. U.S.A. 103 17088

  18. Lancaster K M, Roemelt M, Ettenhuber P, Hu Y, Ribbe M W, Neese F, Bergmann U and DeBeer S 2011 Science 334 974

  19. Spatzal T, Aksoyoglu M, Zhang L, Andrade S L A, Schleicher E, Weber S, Rees D C and Einsle O 2011 Science 334 940

  20. Kirn J and Rees D C 1992 Nature 360 553

  21. Bishop P E, Jarlenski D M and Hetherington D R 1980 Proc. Natl. Acad. Sci. U.S.A. 77 7342

  22. Chan M, Kim J and Rees D 1993 Science 260 792

  23. Kim J and Rees D 1992 Science 257 1677

  24. Eady R R 1995 In Metal Ions in Biological Systems. Sigel H and Sigel A (eds.) (New York: Marcel Dekker Inc.) p 363

  25. Allen A D and Senoff C V 1965 J. Chem. Soc., Chem. Commun. 621

  26. Chatt J, Pearman A J and Richards R L 1975 Nature 253 39

  27. Yandulov D V and Schrock R R 2003 Science 301 76

  28. Arashiba K, Miyake Y and Nishibayashi Y 2011 Nat. Chem. 3 120

  29. Baskaran S and Sivasankar C 2014 Comp. Theor. Chem. 1027 73

  30. Baskaran S and Sivasankar C 2013 J. Mol. Catal. A: Chem. 370 140

  31. Balu P, Baskaran S, Kannappan V and Sivasankar C 2012 New J. Chem. 36 562

  32. Balu P, Baskaran S, Kannappan V and Sivasankar C 2012 Polyhedron 31 676

  33. Fryzuk M D, Love J B, Rettig S J and Young V G 1997 Science 275 1445

  34. Pool J A, Lobkovsky E and Chirik P J 2004 Nature 427 527

  35. Askevold B, Nieto J T, Tussupbayev S, Diefenbach M, Herdtweck E, Holthausen M C and Schneider S 2011 Nat. Chem. 3 532

  36. Schöffel J, Rogachev A Y, DeBeer George S and Burger P 2009 Angew. Chem. Int. Ed. 48 4734

  37. Scepaniak J J, Vogel C S, Khusniyarov M M, Heinemann F W, Meyer K and Smith J M 2011 Science 331 1049

  38. Rodriguez M M, Bill E, Brennessel W W and Holland P L 2011 Science 334 780

  39. Laplaza C E and Cummins C C 1995 Science 268 861

  40. Hahn J, Nasluzov V A, Neyman K M and Rösch, N 1997 Inorg. Chem. 36 3947

  41. Johnson A R, Davis W M, Cummins C C, Serron S, Nolan S P, Musaev D G and Morokuma K 1998 J. Am. Chem. Soc. 120 2071

  42. Khoroshun D V, Musaev D G and Morokuma K 1999 Organometallics 18 5653

  43. Neyman K M, Nasluzov V A, Hahn J, Landis C R and Rösch N 1997 Organometallics 16 995

  44. Cui Q, Musaev D G, Svensson M, Sieber S and Morokuma K 1995 J. Am. Chem. Soc. 117 12366

  45. McClain K R, O’Donohue C, Koley A, Bonsu R O, Abboud K A, Revelli J C, Anderson T and McElwee-White L 2014 J. Am. Chem. Soc. 136 1650

  46. McClain K R, Shi Z, Walker A V, Abboud K A, Anderson T and McElwee-White L 2012 Eur. J. Inorg. Chem. 4579

  47. Becke A D 1993 J. Chem. Phys. 98 5648

  48. Becke A D 1993 J. Chem. Phys. 98 1372

  49. Becke A D 1988 Phys. Rev. A: At. Mol. Opt. Phys. 38 3098

  50. Dunning Jr. T H and Hay P J 1976 In Modern Theoretical Chemistry Schaefer III H F (ed.) (New York: Plenum)

  51. Hay P J and Wadt W R 1985 J. Chem. Phys. 82 299

  52. Hay P J and Wadt W R 1985 J. Chem. Phys. 82 270

  53. Wadt W R and Hay P J 1985 J. Chem. Phys. 82 284

  54. Cossi M, Barone V, Mennucci B and Tomasi J 1998 Chem. Phys. Lett. 286 253

  55. Cances E, Mennucci B and Tomasi J 1997 J. Chem. Phys. 107 3032

  56. Mennucci B and Tomasi J 1997 J. Chem. Phys. 106 5151

  57. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Laham A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A Gaussian 03, Revision C.01. Gaussian, Inc.: Wallingford CT, 2003

  58. Chisholm M H, Extine M and Reichert W 1976 In Inorganic Compounds with Unusual Properties American Chemical Society, Vol. 150, pp 273-288

  59. Guha A K and Phukan A K 2011 Inorg. Chem. 50 8826

  60. Kinney R A, McNaughton R L, Chin J M, Schrock R R and Hoffman B M 2010 Inorg. Chem. 50 418

  61. Schenk S, Le Guennic B, Kirchner B and Reiher M 2008 Inorg. Chem. 47 3634

Download references

Acknowledgements

Dr. C S thanks the Department of Science and Techno- logy (DST) New Delhi, India for the financial support (No. SR/FT/CS-055/2008). S B gratefully acknowledges the Council of Scientific & Industrial Research (CSIR) for a Senior Research Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CHINNAPPAN SIVASANKAR.

Additional information

Supplementary Information

Optimized geometries of Mo complexes, energy profiles, tables and Cartesian coordinates for reactants, products, intermediates and transition states are given in Supplementary Information which is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 8.56 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BASKARAN, S., BALU, P. & SIVASANKAR, C. Functionalization of N 2 to NH 3 via direct N ≡ N bond cleavage using M(III)(NMe 2 ) 3 (M=W/Mo): A theoretical study. J Chem Sci 127, 83–94 (2015). https://doi.org/10.1007/s12039-014-0752-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-014-0752-3

Keywords

Navigation