Skip to main content
Log in

Phylogeny of metabolic networks: A spectral graph theoretical approach

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Many methods have been developed for finding the commonalities between different organisms in order to study their phylogeny. The structure of metabolic networks also reveals valuable insights into metabolic capacity of species as well as into the habitats where they have evolved. We constructed metabolic networks of 79 fully sequenced organisms and compared their architectures. We used spectral density of normalized Laplacian matrix for comparing the structure of networks. The eigenvalues of this matrix reflect not only the global architecture of a network but also the local topologies that are produced by different graph evolutionary processes like motif duplication or joining. A divergence measure on spectral densities is used to quantify the distances between various metabolic networks, and a split network is constructed to analyse the phylogeny from these distances. In our analysis, we focused on the species that belong to different classes, but appear more related to each other in the phylogeny. We tried to explore whether they have evolved under similar environmental conditions or have similar life histories. With this focus, we have obtained interesting insights into the phylogenetic commonality between different organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Arodź T 2008 Clustering organisms using metabolic networks. Comput. Sci. Lect. Notes Comput. Sci. 5102 527–534

    Article  Google Scholar 

  • Banerjee A 2012 Structural distance and evolutionary relationship of networks. Biosystems 107 186–196

    Article  PubMed  Google Scholar 

  • Banerjee A et al. 2007 Spectral plots and the representation and interpretation of biological data. Theory Biosci. 126 15–21

    Article  PubMed  Google Scholar 

  • Banerjee A et al. 2008a On the spectrum of the normalized graph Laplacian. Linear Algebra Appl. 428 3015–3022

    Article  Google Scholar 

  • Banerjee A et al. 2008b Spectral plot properties: towards a qualitative classification of networks. Netw. Heterog. Media 3 395–411

    Article  Google Scholar 

  • Banerjee A et al. 2009 Graph spectra as a systematic tool in computational biology. Discret. Appl. Math. 157 2425–2431

    Article  Google Scholar 

  • Banerjee A et al. 2015 Effect on normalized graph Laplacian spectrum by motif attachment and duplication. Appl. Math. Comput. 261 382–387

  • Borenstein E et al. 2008 Large-scale reconstruction and phylogenetic analysis of metabolic environments. PNAS 105 14482–14487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung F 1997 Spectral graph theory. AMS Publications

  • Danhorn T et al. 2007 Biofilm formation by plant-associated bacteria. Annu. Rev. Microbiol. 61 401–422

    Article  CAS  PubMed  Google Scholar 

  • Doolittle WF et al. 1999 Phylogenetic classification and the universal tree. Science 284 2124–2129

    Article  CAS  PubMed  Google Scholar 

  • Dorogovtsev SN 2004 Random networks: eigenvalue spectra. Physica A. 338 76–83

    Article  Google Scholar 

  • Dutta C et al. 2002 Horizontal gene transfer and bacterial diversity. J. Biosci. 27 27–33

    Article  PubMed  Google Scholar 

  • Eisen JA et al. 2000 Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr. Opin. Genet. Dev. 10 606–611

    Article  CAS  PubMed  Google Scholar 

  • Forst CV et al. 2006 Algebraic comparison of metabolic networks, phylogenetic inference, and metabolic innovation. BMC Bioinformatics 7 67

    Article  PubMed Central  PubMed  Google Scholar 

  • Garcia-Vallve S et al. 2000 Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res. 10 1719–1725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hedges SB et al. 2002 The origin and evolution of model organisms. Nat. Rev. Genet. 3 838–849

    Article  CAS  PubMed  Google Scholar 

  • Huson DH 1998 SplitsTree: analysing and visualizing evolutionary data. Bioinformatics 14 68–73

    Article  CAS  PubMed  Google Scholar 

  • Huson DH et al. 2006 Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23 254–267

    Article  CAS  PubMed  Google Scholar 

  • Jain R et al. 2002 Horizontal gene transfer in microbial genome evolution. Theor. Popul. Biol. 61 489–495

    Article  PubMed  Google Scholar 

  • Kanehisa M et al. 2006 From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34 D354–D357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanehisa M et al. 2014 Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42 D199–D205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koonin EV et al. 2001 Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55 709–742

    Article  CAS  PubMed  Google Scholar 

  • Liu W et al. 2007 A network perspective on the topological importance of enzymes and their phylogenetic conservation. BMC Bioinformatics 8 121

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma H et al. 2003 Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 19 270–277

    Article  CAS  PubMed  Google Scholar 

  • Ma HW et al. 2004 Phylogenetic comparison of metabolic capacities of organisms at genome level. Mol. Phylogenet. Evol. 31 204–213

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS et al. 2006 Cyanobacterial response regulator PatA contains a conserved N-terminal domain (PATAN) with an alpha-helical insertion. Bioinformatics 22 1297–1301

    Article  CAS  PubMed  Google Scholar 

  • Mano A et al. 2010 Comparative classification of species and the study of pathway evolution based on the alignment of metabolic pathways. BMC Bioinformatics 11 S38

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin W et al. 1999 Mosaic bacterial chromosomes: a challenge on route to a tree of genomes. Bioessays 21 99–104

    Article  CAS  PubMed  Google Scholar 

  • Mazurie A et al. 2008 Phylogenetic distances are encoded in networks of inter- acting pathways. Bioinformatics 24 2579–2585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohar B et al. 1991 The Laplacian spectrum of graphs. Graph Theory Combin. Appl. 2 871–898

    Google Scholar 

  • Ochman H et al. 2000 Lateral gene transfer and the nature of bacterial innovation. Nature 405 299–304

    Article  CAS  PubMed  Google Scholar 

  • Oh SJ et al. 2006 Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks. BMC Bioinformatics 7 284

    Article  PubMed Central  PubMed  Google Scholar 

  • Olsen GJ et al. 1994 The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176 1–6

    PubMed Central  CAS  PubMed  Google Scholar 

  • Podani J et al. 2001 Comparable system-level organization if Archaea and Eukaryotes. Nat. Genet. 29 54–56

    Article  CAS  PubMed  Google Scholar 

  • Rivera CM et al. 1998 Genomic evidence for two functionally distinct genes classes. PNAS 95 6239–6244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rudrappa T et al. 2008 Causes and consequences of plant-associated biofilms. FEMS Microbiol. Ecol. 64 153–166

    Article  CAS  PubMed  Google Scholar 

  • Shigenobu S et al. 2000 Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature. 407 81–86

    Article  CAS  PubMed  Google Scholar 

  • Stelzer M et al. 2011 An extended bioreaction database that significantly improves reconstruction and analysis of genome-scale metabolic networks. Integr. Biol. 3 1071–1086

    Article  CAS  Google Scholar 

  • Studholme DJ et al. 2000 Functionality of Purified σ N(σ 54) and a NifA-Like Protein from the Hyperthermophile Aquifex aeolicus. J. Acteriol. 182 1616–1623

  • Takami H et al. 2000 Complete genome sequence of the alkaliphilic bacterium Bacillus subtilis. Nucleic Acids Res. 28 4317–4331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamagnini P et al. 2002 Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol. Mol. Biol. Rev. 66 1–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vukadinovic D et al. 2002 On the spectrum and structure of internet topology graphs. Innov. Internet Comput. Syst. Lect. Notes Comput. Sci. 2346 83–95

    Article  Google Scholar 

  • Woese C 1998 The universal ancestor. Proc. Natl. Acad. Sci. USA 95 6854–6859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolf YI et al. 2002 Genome trees and the tree of life. Trends Genet. 18 472–479

    Article  CAS  PubMed  Google Scholar 

  • Wood DW et al. 2001 The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294 2317–2323

    Article  CAS  PubMed  Google Scholar 

  • Zhan C et al. 2010 On the distributions of Laplacian eigenvalues versus node degrees in complex networks. Physica A. 389 1779–1788

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KD gratefully acknowledge the financial support from CSIR (file number 09/921 (0070)/2012-EMR-I), India. The part of the work done by BD is financially supported by the project National Network for Mathematical and Computational Biology (SERB/F/4931/2013-14) funded by SERB, India. The authors are thankful to Ravi Kumar Singh for tree construction, as well as to Partho Sarothi Ray for helping to prepare the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Banerjee.

Additional information

[Deyasi K, Banerjee A and Deb B 2015 Phylogeny of metabolic networks: A spectral graph theoretical approach. J. Biosci.] DOI 10.1007/s12038-015-9562-0

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deyasi, K., Banerjee, A. & Deb, B. Phylogeny of metabolic networks: A spectral graph theoretical approach. J Biosci 40, 799–808 (2015). https://doi.org/10.1007/s12038-015-9562-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-015-9562-0

Keywords

Navigation