Skip to main content
Log in

Analysis of core–periphery organization in protein contact networks reveals groups of structurally and functionally critical residues

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The representation of proteins as networks of interacting amino acids, referred to as protein contact networks (PCN), and their subsequent analyses using graph theoretic tools, can provide novel insights into the key functional roles of specific groups of residues. We have characterized the networks corresponding to the native states of 66 proteins (belonging to different families) in terms of their core–periphery organization. The resulting hierarchical classification of the amino acid constituents of a protein arranges the residues into successive layers – having higher core order – with increasing connection density, ranging from a sparsely linked periphery to a densely intra-connected core (distinct from the earlier concept of protein core defined in terms of the three-dimensional geometry of the native state, which has least solvent accessibility). Our results show that residues in the inner cores are more conserved than those at the periphery. Underlining the functional importance of the network core, we see that the receptor sites for known ligand molecules of most proteins occur in the innermost core. Furthermore, the association of residues with structural pockets and cavities in binding or active sites increases with the core order. From mutation sensitivity analysis, we show that the probability of deleterious or intolerant mutations also increases with the core order. We also show that stabilization centre residues are in the innermost cores, suggesting that the network core is critically important in maintaining the structural stability of the protein. A publicly available Web resource for performing core–periphery analysis of any protein whose native state is known has been made available by us at http://www.imsc.res.in/~sitabhra/proteinKcore/index.html .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abkevich VI, Gutin AM and Shakhnovich EI 1994 Specific nucleus as the transition state for protein folding: evidence from the lattice model. Biochemistry 33 10026–10036

    Article  CAS  PubMed  Google Scholar 

  • Afonnikov DA, Morozov AV and Kolchanov NA 2006 Prediction of contact numbers of amino acid residues using a neural network regression algorithm. Biophysics 51 56–60

    Article  Google Scholar 

  • Aftabuddin M and Kundu S 2006 Weighted and unweighted network of amino acids within protein. Phys. A. 369 895–904

    Article  CAS  Google Scholar 

  • Aloy P, Querol E, Aviles FX and Sternberg MJE 2001 Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking. J. Mol. Biol. 311 395–408

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Hamelin JI, Dall'Asta L, Barrat A and Vespignani A 2005 k-core decomposition: a tool for the visualization of large scale networks. arXiv preprint cs/0504107.

  • Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, Venger I and Pietrokovski S 2004 Network analysis of protein structures identifies functional residues. J. Mol. Biol. 344 1135–1146

    Article  CAS  PubMed  Google Scholar 

  • Ashkenazy H, Erez E, Martz E, Pupko T and Ben-Tal N 2010 ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. gkq399

  • Atilgan AR, Akan P and Baysal C 2004 Small-world communication of residues and significance for protein dynamics. Biophys. J. 86 85–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bagler G and Sinha S 2005 Network properties of protein structures. Phys. A. 346 27–33

    Article  CAS  Google Scholar 

  • Bagler G and Sinha S 2007 Assortative mixing in protein contact networks and protein folding kinetics. Bioinformatics 23 1760–1767

    Article  CAS  PubMed  Google Scholar 

  • Bahar I, Atilgan AR and Erman B 1997 Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold. Des. 2 173–181

    Article  CAS  PubMed  Google Scholar 

  • Bahar I, Atilgan AR, Demirel MC and Erman B 1998 Vibrational dynamics of folded proteins: significance of slow and fast motions in relation to function and stability. Phys. Rev. Lett. 80 2733

    Article  CAS  Google Scholar 

  • Bahar I, Erman B, Jernigan RL, Atilgan AR and Covell DG 1999 Collective motions in HIV-1 reverse transcriptase: examination of flexibility and enzyme function. J. Mol. Biol. 285 1023–1037

    Article  CAS  PubMed  Google Scholar 

  • Barah P and Sinha S 2008 Analysis of protein folds using protein contact networks. Pramana 71 369–378

    Article  CAS  Google Scholar 

  • Brinda K and Vishveshwara S 2005 A network representation of protein structures: implications for protein stability. Biophys. J. 89 4159–4170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brinda K, Surolia A and Vishveshwara S 2005 Insights into the quaternary association of proteins through structure graphs: a case study of lectins. Biochem. J. 391 1–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brinda K, Vishveshwara S and Vishveshwara S 2010 Random network behaviour of protein structures. Mol. Biosyst. 6 391–398

    Article  CAS  PubMed  Google Scholar 

  • Carmi S, Havlin S, Kirkpatrick S, Shavitt Y and Shir E 2007 A model of Internet topology using k-shell decomposition. Proc. Natl. Acad. Sci. USA 104 11150–11154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chatterjee N and Sinha S 2007 Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans Prog. Brain Res. 168 145–153

  • Clementi C, Nymeyer H and Onuchic JN 2000 Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298 937–953

    Article  CAS  PubMed  Google Scholar 

  • Csermely P, Korcsmaros T, Kiss HJM, London G and Nussinov R 2013 Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol. Ther. 138 333–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • da Silveira CH, Pires DEV, Minardi RC, Ribeiro C, Veloso CJM, Lopes JCD, Meira W, Neshich G, et al. 2009 Protein cutoff scanning: a comparative analysis of cutoff dependent and cutoff free methods for prospecting contacts in proteins. Proteins: Struct. Funct. Bioinf. 74 727–743

    Article  Google Scholar 

  • del Sol A and O'Meara P 2005 Small-world network approach to identify key residues in protein-protein interaction. Proteins: Struct. Funct. Bioinf. 58 672–682

    Article  Google Scholar 

  • del Sol A, Fujihashi H, Amoros D and Nussinov R 2006a Residue centrality, functionally important residues, and active site shape: analysis of enzyme and non-enzyme families. Protein Sci. 15 2120–2128

    Article  PubMed Central  PubMed  Google Scholar 

  • del Sol A, Fujihashi H, Amoros D and Nussinov R 2006b Residues crucial for maintaining short paths in network communication mediate signaling in proteins. Mol. Syst. Biol. 2

  • Demirel MC, Atilgan AR, Bahar I, Jernigan RL and Erman B 1998 Identification of kinetically hot residues in proteins. Protein Sci. 7 2522–2532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Di Paola L, De Ruvo M, Paci P, Santoni D and Giuliani A 2012 Protein contact networks: an emerging paradigm in chemistry. Chem. Rev. 113 1598–1613

    Article  PubMed  Google Scholar 

  • Dokholyan NV, Buldyrev SV, Stanley HE and Shakhnovich EI 2000 Identifying the protein folding nucleus using molecular dynamics. J. Mol. Biol. 296 1183–1188

    Article  CAS  PubMed  Google Scholar 

  • Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y and Liang J 2006 CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34 W116–W118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ertekin A, Nussinov R and Haliloglu T 2006 Association of putative concave protein-binding sites with the fluctuation behavior of residues. Protein Sci. 15 2265–2277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Everett MG and Borgatti SP 1999 The centrality of groups and classes. J. Math. Sociol. 23 181–201

  • Fersht AR 1995 Optimization of rates of protein folding: the nucleation-condensation mechanism and its implications. Proc. Natl. Acad. Sci. USA 92 10869–10873

  • Fersht AR 1997 Nucleation mechanisms in protein folding. Curr. Opin. Struct. Biol. 7 3–9

    Article  CAS  PubMed  Google Scholar 

  • Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E and Ben-Tal N 2003 ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19 163–164

    Article  CAS  PubMed  Google Scholar 

  • Grantcharova VP, Riddle DS, Santiago JV and Baker D 1998 Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. Nat. Struct. Mol. Biol. 5 714–720

    Article  CAS  Google Scholar 

  • Greene LH and Higman VA 2003 Uncovering network systems within protein structures. J. Mol. Biol. 334 781–791

    Article  CAS  PubMed  Google Scholar 

  • Gruebele M and Wolynes PG 1998 Satisfying turns in folding transitions. Nature Struct. Biol. 5 662–665

    Article  CAS  PubMed  Google Scholar 

  • Haliloglu T and Erman B 2009 Analysis of correlations between energy and residue fluctuations in native proteins and determination of specific sites for binding. Phys. Rev. Lett. 102 088103

    Article  PubMed  Google Scholar 

  • Haliloglu T, Bahar I and Erman B 1997 Gaussian dynamics of folded proteins. Phys. Rev. Lett. 79 3090

    Article  CAS  Google Scholar 

  • Haliloglu T, Keskin O, Ma B and Nussinov R 2005 How similar are protein folding and protein binding nuclei? Examination of vibrational motions of energy hot spots and conserved residues. Biophys. J. 88 1552–1559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haliloglu T, Seyrek E and Erman B 2008 Prediction of binding sites in receptor-ligand complexes with the Gaussian Network Model. Phys. Rev. Lett. 100 228102

    Article  PubMed  Google Scholar 

  • Haspel N, Tsai CJ, Wolfson H and Nussinov R 2003 Reducing the computational complexity of protein folding via fragment folding and assembly. Protein Sci. 12 1177–1187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hleap JS, Susko E and Blouin C 2013 Defining structural and evolutionary modules in proteins: a community detection approach to explore sub-domain architecture. BMC Struct. Biol. 13 20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holme P 2005 Core-periphery organization of complex networks. Phys. Rev. E. 72 046111

    Article  Google Scholar 

  • Hu G, Yan W, Zhou J and Shen B 2014 Residue interaction network analysis of Dronpa and a DNA clamp. J. Theor. Biol. 348 55–64

    Article  CAS  PubMed  Google Scholar 

  • Hubner IA, Oliveberg M and Shakhnovich EI 2004 Simulation, experiment, and evolution: understanding nucleation in protein S6 folding. Proc. Natl. Acad. Sci. USA 101 8354–8359

  • Itzhaki LS, Otzen DE and Fersht AR 1995 The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding. J. Mol. Biol. 254 260–288

    Article  CAS  PubMed  Google Scholar 

  • Jeong H, Mason SP, Barabási AL and Oltvai ZN 2001 Lethality and centrality in protein networks. Nature 411 41–42

    Article  CAS  PubMed  Google Scholar 

  • Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE and Makse HA 2010 Identification of influential spreaders in complex networks. Nat. Phys. 6 888–893

    Article  CAS  Google Scholar 

  • Kundu S 2005 Amino acid network within protein. Phys. A. 346 104–109

    Article  CAS  Google Scholar 

  • Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T and Ben-Tal N 2005 ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 33 W299–W302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Landgraf R, Xenarios I and Eisenberg D 2001 Three-dimensional cluster analysis identifies interfaces and functional residue clusters in proteins. J. Mol. Biol. 307 1487–1502

    Article  CAS  PubMed  Google Scholar 

  • Li H 2009 Predicting protein folding cores based on complex network and phylogenetic analyses. BioMedical Information Engineering, 2009. FBIE 2009. International Conference on Future, IEEE

  • Li L and Shakhnovich EI 2001 Constructing, verifying, and dissecting the folding transition state of chymotrypsin inhibitor 2 with all-atom simulations. Proc. Natl. Acad. Sci. USA 98 13014–13018

  • Li J, Wang J and Wang W 2008 Identifying folding nucleus based on residue contact networks of proteins. Proteins: Struct. Funct. Bioinf. 71 1899–1907

    Article  CAS  Google Scholar 

  • Lichtarge O, Bourne HR and Cohen FE 1996 An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257 342–358

    Article  CAS  PubMed  Google Scholar 

  • Lin C-C, Juan H-F, Hsiang J-T, Hwang Y-C, Mori H and Huang H-C 2009 Essential Core of Protein-Protein Interaction Network in Escherichia coli. J. Proteome Res. 8 1925–1931

    Article  CAS  PubMed  Google Scholar 

  • Magyar C, Gromiha MM, Pujadas G, Tusnady GE and In S 2005 SRide: a server for identifying stabilizing residues in proteins. Nucleic Acids Res. 33 W303–W305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Newman M 2010 Networks: An Introduction (Oxford University Press)

  • Ng PC and Henikoff S 2003 SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 31 3812–3814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicola G and Vakser IA 2007 A simple shape characteristic of protein‒protein recognition. Bioinformatics 23 789–792

    Article  CAS  PubMed  Google Scholar 

  • Ondrechen MJ, Clifton JG and Ringe D 2001 THEMATICS: a simple computational predictor of enzyme function from structure. Proc. Natl. Acad. Sci. USA 98 12473–12478

  • Pande VS, Grosberg AY, Tanaka T and Rokhsar DS 1998 Pathways for protein folding: is a new view needed? Curr. Opin. Struct. Biol. 8 68–79

    Article  CAS  PubMed  Google Scholar 

  • Qin M, Zhang J and Wang W 2006 Effects of disulfide bonds on folding behavior and mechanism of the Î2-sheet protein tendamistat. Biophys. J. 90 272–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riddle DS, Grantcharova VP, Santiago JV, Alm E, Ruczinski I and Baker D 1999 Experiment and theory highlight role of native state topology in SH3 folding. Nat. Struct. Mol. Biol. 6 1016–1024

    Article  CAS  Google Scholar 

  • Seidman SB 1983 Network structure and minimum degree. Soc. Networks 5 269–287

    Article  Google Scholar 

  • Shander A, Gromiha M, Fawareh H and Sarai A 2004 ASA view: solvent accessibility graphics for proteins. Bioinformatics 51 51

    Google Scholar 

  • Shen T, Hofmann CP, Oliveberg M and Wolynes PG 2005 Scanning malleable transition state ensembles: comparing theory and experiment for folding protein U1A. Biochemistry 44 6433–6439

    Article  CAS  PubMed  Google Scholar 

  • Sobolev V, Sorokine A, Prilusky J, Abola EE and Edelman M 1999 Automated analysis of interatomic contacts in proteins. Bioinformatics 15 327–332

    Article  CAS  PubMed  Google Scholar 

  • Tasdighian S, Di Paola L, De Ruvo M, Paci P, Santoni D, Palumbo P, Mei G, Di Venere A, et al. 2013 Modules identification in protein structures: the topological and geometrical solutions. J. Chem. Inf. Model. 54 159–168

    Article  PubMed  Google Scholar 

  • Ternstrom T, Mayor U, Akke M and Oliveberg M 1999 From snapshot to movie: analysis of protein folding transition states taken one step further. Proc. Natl. Acad. Sci. USA 96 14854–14859

  • Toth-Petroczy A and Tawfik DS 2011 Slow protein evolutionary rates are dictated by surface-core association. Proc. Natl. Acad. Sci. USA 108 11151–11156

  • Vendruscolo M 2011 Protein regulation: the statistical theory of allostery. Nat. Chem. Biol. 7 411–412

    Article  CAS  PubMed  Google Scholar 

  • Vendruscolo M, Paci E, Dobson CM and Karplus M 2001 Three key residues form a critical contact network in a protein folding transition state. Nature 409 641–645

    Article  CAS  PubMed  Google Scholar 

  • Vendruscolo M, Dokholyan NV, Paci E and Karplus M 2002 Small-world view of the amino acids that play a key role in protein folding. Phys. Rev. E. 65 061910

    Article  CAS  Google Scholar 

  • Vijayabaskar MS and Vishveshwara S 2010 Interaction energy based protein structure networks. Biophys. J. 99 3704–3715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vishveshwara S, Brinda KV and Kannan N 2002 Protein structure: insights from graph theory. J. Theor. Comput. Chem. 1 187–211

    Article  CAS  Google Scholar 

  • Vishveshwara S, Ghosh A and Hansia P 2009 Intra and inter-molecular communications through protein structure network. Curr. Protein Pept. Sci. 10 146–160

    Article  CAS  PubMed  Google Scholar 

  • Watts DJ and Strogatz SH 1998 Collective dynamics of ‘small-world’ networks. Nature. 393 440–442

  • Wuchty S and Almaas E 2005 Peeling the yeast protein network. Proteomics 5 444–449

    Article  CAS  PubMed  Google Scholar 

  • Yogurtcu ON, Gur M and Erman B 2009 Statistical thermodynamics of residue fluctuations in native proteins. J. Chem. Phys. 130 095103

    Article  PubMed  Google Scholar 

  • Zhang J, Zhao H, Xu J-q and Ge X 2009 The K-core decomposition and visualization of internet router-level topology. Computer Science and Information Engineering, 2009 WRI World Congress on, IEEE

  • Zhang H, Zhao H, Cai W, Liu J and Zhou W 2010 Using the k-core decomposition to analyze the static structure of large-scale software systems. J. Supercomput. 53 352–369

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Indrani Bose and Somdatta Sinha for helpful discussions. We also thank the VIT University and IMSc for providing computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sitabhra Sinha.

Additional information

[Isaac AE and Sinha S 2015 Analysis of core–periphery organization in protein contact networks reveals groups of structurally and functionally critical residues. J. Biosci.] DOI 10.1007/s12038-015-9554-0

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/oct2015/supp/Emerson.pdf

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaac, A.E., Sinha, S. Analysis of core–periphery organization in protein contact networks reveals groups of structurally and functionally critical residues. J Biosci 40, 683–699 (2015). https://doi.org/10.1007/s12038-015-9554-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-015-9554-0

Keywords

Navigation