Skip to main content
Log in

Microalgae respond differently to nitrogen availability during culturing

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Variations in the exogenous nitrogen level are known to significantly affect the physiological status and metabolism of microalgae. However, responses of red, green and yellow-green algae to nitrogen (N) availability have not been compared yet. Porphyridium cruentum, Scenedesmus incrassatulus and Trachydiscus minutus were cultured in the absence of N in the medium and subsequent resupply of N to the starved cells. Culture growth and in-gel changes in isoenzyme pattern and activity of glutamate synthase, glutamate dehydrogenase, malate dehydrogenase, aspartate aminotransferase, superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase were studied. The results demonstrated that the algae responded to the fully N-depleted and N-replete culture conditions by species-specific metabolic enzyme changes, suggesting differential regulation of both enzyme activity and cellular metabolism. Substantial differences in the activities of the antioxidant enzymes between N-depleted and N-replete cells of each species as well as between the species were also found. In the present work, besides the more general responses, such as adjustment of growth and pigmentation, we report on the involvement of specific metabolic and antioxidant enzymes and their isoforms in the mechanisms operating during N starvation and recovery in P. cruentum, T. minutus and S. incrassatulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abd El-Baky HH, El Baz FK and El-Baroty GS 2004 Production of antioxidant by the green alga Dunaliella salina. Int. J. Agri. Biol. 6 49–57

    CAS  Google Scholar 

  • Anderson MD, Prasad TK and Stewart CR 1995 Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109 1247–1257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arias-Penaranda MT, Cristiani-Urbina E, Montes-Horcasitas C, Esparza-García F, Torzillo G and Canizares-Villanueva RO 2013 Scenedesmus incrassatulus CLHE-Si01: A potential source of renewable lipid for high quality biodiesel production. Bioresour. Technol. 140 158–164

    Article  CAS  PubMed  Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ and Lea PJ 1998 Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and catalase-deficient mutant of barley. Physiol. Plant. 104 280–292

    Article  CAS  Google Scholar 

  • Berges JA, Charlebois DO, Mauzerall DC and Falkowski PG 1996 Differential effects of nitrogen limitation on photosynthetic efficiency of photosystem I and II in microalgae. Plant Physiol. 110 689–696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Billi D and Caiola MG 1996 Effects of nitrogen limitation and starvation on Chroococcidiopsis sp. (Chroococcales). New Phytol. 133 563–571

    Article  CAS  Google Scholar 

  • Bradford MA 1976 Rapid and sensitive method for the quantification of micrograms quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. 72 248–254

    Article  CAS  PubMed  Google Scholar 

  • Brody M and Emerson R 1959 The effect of wavelength and intensity of light on the production of pigments in Porphyridium cruenlum. Am. J. Bot. 46 433–440

    Article  CAS  Google Scholar 

  • Bromke MA, Giavalisco P, Willmitzer L and Hesse H 2013 Metabolic analysis of adaptation to short-term changes in culture conditions of the marine diatom Thalassiosira pseudonana. PLoS ONE 8 e67340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chandlee JM and Scandalios JG 1983 Gene expression during early kernel developmental in Zea mays. Dev. Genetics 4 99–115

    Article  CAS  Google Scholar 

  • Cohen Z 1990 The production potential of eicosapentaenoic and arachidonic acids by the red alga Porphyridium cruentum. J. Am. Oil Chem. Soc. 67 916–920

    Article  CAS  Google Scholar 

  • Dong H-P, Williams E, Wang D-Z, Xie Z-X, Hsia R-C, Jenck A, Halden R, Li J, et al. 2013 Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiol. 162 1110–1126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Georgiev D, Dilov H and Avramova S 1978 Millieu nutritif tamponne et méthode de culture intensive des microalgues vertes. Hydrobiology (Bulgaria) 7 14–23. In Bulgarian

    CAS  Google Scholar 

  • Gigova L and Ivanova N 2014 Responses of Symploca sp. (Cyanobacteria) to nitrogen depletion during culturing. Compt. Rend. Acad. Bulg. Sci. 67 43–48

    CAS  Google Scholar 

  • Griffith SM and Vance CP 1989 Aspartate aminotransferase in alfalfa root nodules 1. Purification and partial characterization. Plant Physiol. 90 1622–1629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guschina IA and Harwood JL 2006 Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45 160–186

    Article  CAS  PubMed  Google Scholar 

  • Hellebust JA and Ahmad I 1989 Regulation of nitrogen assimilation in green microalgae. Biological Oceanography 6 241–255

    Google Scholar 

  • Hockin NL, Mock T, Mulholland F, Kopriva S and Malin G 2012 The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol. 158 299–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Honold GR, Farkas GL and Stahmann MA 1966 The oxidation-reduction enzymes of wheat. I. A qualitative investigation of the dehydrogenases. Cereal Chem. 43 517–528

    CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M and Darzins A 2008 Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54 621–639

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 680–685

    Article  CAS  PubMed  Google Scholar 

  • Larson TR and Harrison PJ 1997 Storage lipid metabolism during nitrogen assimilation in a marine diatom; in Physiology, biochemistry, and molecular biology of plant lipids (ed) JP Williams (Dordrecht: Kluwer Academic Publishers) pp 256–258

    Chapter  Google Scholar 

  • Lee do Y, Park JJ, Barupal DK and Fiehn O 2012 System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium. Mol Cell Proteomics 11 973–988

  • Levasseur M, Thompson PA and Harrison PJ 1993 Physiological acclimation of marine phytoplankton to different nitrogen sources; J. Phycol. 29 587–595

    Article  CAS  Google Scholar 

  • Lin C-L, Chen H-J and Hou W-C 2002 Activity staining of glutathione peroxidase after electrophoresis on native and sodium dodecyl sulfate polyacrylamide gels. Electrophoresis 23 513–516

    Article  CAS  PubMed  Google Scholar 

  • Matoh T, Ida S and Takahashi E 1980 Isolation and characterization of NADH-glutamate synthase from pea (Pisum sativum L.). Plant Cell Physiol. 21 1461–1474

    Article  CAS  PubMed  Google Scholar 

  • Minárik P, Tomášková N, Kollárová M and Antalík M 2002 Malate dehydrogenases - structure and function. Gen. Physiol. Biophys. 21 257–265

    PubMed  Google Scholar 

  • Mizuta H, Shirakura Y and Yasui H 2002 Relationship between phycoerythrin and nitrogen content in Gloiopeltis furcata and Porphyra yezoensis. Algae 17 89–93

    Article  Google Scholar 

  • Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB and Cerutti H 2012 Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75 50–59

    Article  CAS  PubMed  Google Scholar 

  • Nash DT and Davies ME 1975 Isoenzyme changes during the growth cycle of Paul's scarlet rose cell suspensions. Phytochemistry 14 2113–2118

    Article  CAS  Google Scholar 

  • Peter P, Sarma AP, Azeem ul Hasan MD and Murthy SDS 2010 Studies on the impact of nitrogen starvation on the photosynthetic pigments through spectral properties of the cyanobacterium Spirulina platensis: identification of target phycobiliprotein under nitrogen chlorosis. Bot. Res. Int. 3 30–34

    CAS  Google Scholar 

  • Přibyl P, Cepák V and Zachleder V 2013 Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris. J. Appl. Phycol. 25 545–553

    Article  Google Scholar 

  • Razaghi A, Godhe A and Albers E 2014 Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum. Cent. Eur. J. Biol. 9 156–162

    Article  CAS  Google Scholar 

  • Řezanka T, Petránková M, Cepák V, Přibyl P, Sigler K and Cajthaml T 2010 Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Micrbiol. 55 265–269

    Article  Google Scholar 

  • Řezanka T, Lukavský J, Nedbalová L and Sigler K 2011 Effect of nitrogen and phosphorus starvation on the polyunsaturated triacylglycerol composition, including positional isomer distribution, in the alga Trachydiscus minutus. Phytochemistry 72 2342–2351

    Article  PubMed  Google Scholar 

  • Saha SK, Uma L and Subramanian G 2003 Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei BDU 130511. FEMS Microbiol. Ecol. 45 263–272

    Article  Google Scholar 

  • Sauer J, Schreiber U, Schmid R, Völker U and Forchhammer K 2001 Nitrogen starvation-induced chlorosis in Synechococcus PCC 7942. Low-Level Photosynthesis as a mechanism of long-term survival. Plant Physiol. 126 233–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sciandra A, Lazzara L, Claustre H and Babin M 2000 Responses of growth rate, pigment composition and optical properties of Cryptomonas sp. to light and nitrogen stresses. Mar. Ecol. Prog. Ser. 201 107–120

    Article  CAS  Google Scholar 

  • Setlik I 1967 Contamination of algal cultures by heterotrophic microorganisms and its prevention; Ann. Rep. Algol. for the Year 1966 Trebon CSAV Inst. Microbiol. 89–100

  • Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beisson F, Triantaphylides C, et al. 2011 Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 11 7–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silva AF, Lourenco SO and Chaloub RM 2009 Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae). Aquat. Bot. 91 291–297

    Article  Google Scholar 

  • Sinetova MP, Markelova AG and Los DA 2006 The effect of nitrogen starvation on the ultrastructure and pigment composition of chloroplasts in the acidothermophilic microalga Galdieria sulphuraria. Russ. J. Plant Physiol. 53 153–162

    Article  CAS  Google Scholar 

  • Staub R 1961 Ernahrungsphysiologisch-autokologische Untersuchungen an der planktonischen Blaualga Oscillatoria rubescens DC. Schweizerische Zeitschrift fur Hydrologie 23 183–198

    Google Scholar 

  • Sterner RW and Elser JJ 2002 Ecological Stoichiometry: The biology of elements from molecules to the biosphere (Princeton: Princeton University Press)

    Google Scholar 

  • Stitt M, Müller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible W-R and Krapp A 2002 Steps towards an integrated view of nitrogen metabolism. J. Exp. Bot. 53 959–970

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-M, Chen H, He C-L and Wang Q 2013 Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PLoS ONE 8 e69225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana G Gigova.

Additional information

Corresponding editor: B Jagadeeshwar Rao

[Gigova LG and Ivanova NJ 2015 Microalgae respond differently to nitrogen availability during culturing. J. Biosci. 40 1–10] DOI 10.1007/s12038-015-9510-z

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gigova, L.G., Ivanova, N.J. Microalgae respond differently to nitrogen availability during culturing. J Biosci 40, 365–374 (2015). https://doi.org/10.1007/s12038-015-9510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-015-9510-z

Keywords

Navigation