Skip to main content

Advertisement

Log in

Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The enormous population growth, climate change and global warming are now considered major threats to agriculture and world’s food security. To improve the productivity and sustainability of agriculture, the development of high-yielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern –omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, et al. 2012 Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol. 30 174–178

    CAS  PubMed  Google Scholar 

  • Akimoto K, Katakami H, Kim HJ, Ogawa E, Sano CM, Wada Y and Sano H 2007 Epigenetic inheritance in rice plants. Ann. Bot. 100 205–217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR and Daszak P 2004 Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19 535–544

    PubMed  Google Scholar 

  • Baroux C, Raissig MT and Grossniklaus U 2011 Epigenetic regulation and reprogramming during gamete formation in plants. Curr. Opin. Genet. Dev. 21 124–133

    CAS  PubMed  Google Scholar 

  • Basavaraj SH, Singh VK, Singh A, Singh A, Singh A, Yadav S, Ellur RK, Singh D, et al. 2010 Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrid. Mol. Breed. 2 293–305

    Google Scholar 

  • Bernstein BE, Meissner A and Lander ES 2007 The mammalian epigenome. Cell 128 669–681

    CAS  PubMed  Google Scholar 

  • Boerjan W and Vuylsteke M 2009 Integrative genetical genomics in Arabidopsis. Nat. Genet. 41 144–145

    CAS  PubMed  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D'Amore R, Allen AM, McKenzie N, Kramer M, et al. 2012 Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491 705–710

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chakraborty S 2013 Migrate or evolve: options for plant pathogens under climate change. Glob. Chang. Biol. 19 1985–2000

    PubMed  Google Scholar 

  • Chia JM and Ware D 2011Sequencing for the cream of the crop. Nat Biotechnol. 29 138–139

    CAS  PubMed  Google Scholar 

  • Chinnusamy V and Zhu JK 2009 Epigenetic regulation of stress responses in plants. Curr. Opin. Plant Biol. 12 133–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhary S, Gaur R and Gupta S 2012 EST-derived genic molecular markers: development and utilization for generating an advanced transcript map of chickpea. Theor. Appl. Genet. 124 1449–1462

    Google Scholar 

  • Choudhary S, Sethy NK, Shokeen B and Bhatia S 2009 Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor. Appl. Genet. 118 591–608

    Google Scholar 

  • Clark R, Maccurdy R, Jung J, Shaff J, McCouch SR, Aneshansley D and Kochian L 2011 3-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol. 156 455–465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coakley SM, Scherm H and Chakraborty S 1999 Climate change and plant disease management. Annu. Rev. Phytopathol. 37 399–426

    CAS  PubMed  Google Scholar 

  • Cubas P, Vincent C and Coen E 1999 An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401 157–161

    CAS  PubMed  Google Scholar 

  • Du Z, Li H, Wei Q, Zhao X, Wang C, Zhu Q, Yi X, Xu W, et al. 2013 Genome-wide analysis of histone modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. Japonica. Mol. Plant 6 1463–1472

    Google Scholar 

  • Eckardt NA 2009 Deep sequencing maps the maize epigenomic landscape. Plant Cell 21 1024–1026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eichten SR, Swanson-Wagner RA, Schnable JC, Waters AJ, Hermanson PJ, Liu S, Yeh CT, Jia Y, et al. 2011 Heritable epigenetic variation among maize inbreds. PLoS Genet. 7 e1002372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, Carlson S, Helgason A, et al. 2008 Genetics of gene expression and its effect on disease. Nature 452 423–428

    CAS  PubMed  Google Scholar 

  • Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH, Bustamante C, Kochian LV and McCouch SR 2011 Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet. 7 e1002221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X and Zhang Q 2006 GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112 1164–1171

    CAS  PubMed  Google Scholar 

  • Fukai E, Stougaard J and Hayashi M 2013 Activation of an endogenous retrotransposon associated with epigenetic changes in Lotus japonicus: A tool for functional genomics in legumes. Plant Genome doi 10.3835/plantgenome2013.04.0009

  • Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, Bhatia S, Chattopadhyay D, et al. 2011b Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiol. 156 1661–1678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garg R, Patel RK, Tyagi AK and Jain M 2011a De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res. 18 53–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garrett KA, Dendy SP, Frank EE, Rouse MN and Travers SE 2006 Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44 489–509

    CAS  PubMed  Google Scholar 

  • Gaur PM, Jukanti AK and Varshney RK 2012a Impact of genomic technologies on chickpea breeding strategies. Agronomy 2 199–221

    Google Scholar 

  • Gaur R, Azam S, Jeena G, Khan AW, Choudhary S, Jain M, Yadav G, Tyagi AK, et al. 2012b High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res. 19 357–373

    CAS  Google Scholar 

  • Gopalakrishnan S, Sharma RK, Rajkumar KA, Joseph M, Singh VP, Singh AK, Bhat KV, Singh NK, et al. 2008 Integrating marker-assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in Basmati rice. Plant Breed. 127 131–139

    CAS  Google Scholar 

  • Gregory PJ, Johnson SN, Newton AC and Ingram JSI 2009 Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60 2827–2838.

    CAS  PubMed  Google Scholar 

  • Gujaria N, Kumar A, Dauthal P, Dubey A, Hiremath P, Bhanu Prakash A, Farmer A, Bhide M, et al. 2011 Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theor. Appl. Genet. 122 1577–1589

    PubMed Central  PubMed  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS and Samuel MD 2002 Climate warming and disease risks for terrestrial and marine biota. Science 296 2158–2162

    CAS  PubMed  Google Scholar 

  • He G, Elling AA and Deng XW 2011 The epigenome and plant development. Annu. Rev. Plant Biol. 62 411–435

    CAS  PubMed  Google Scholar 

  • He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, Liang M, He H, et al. 2010 Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22 17–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, Bhanuprakash A, et al. 2011 Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol. J. 9 922–931

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiremath PJ, Kumar A, Penmetsa RV, Farmer A, Schlueter JA, Chamarthi SK, Whaley AM, Carrasquilla-Garcia N, et al. 2012 Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol. J. 10 716–732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK and Cavanagh CR 2012a A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J. 10 826–839

    CAS  PubMed  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, et al. 2009 High-throughput genotyping by whole-genome resequencing. Genome Res. 19 1068–1076

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, et al. 2012b A map of rice genome variation reveals the origin of cultivated rice. Nature 490 497–501

    CAS  PubMed  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, et al. 2010 Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet. 42 961–967

    CAS  PubMed  Google Scholar 

  • Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, et al. 2012c Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet. 44 32–39

    Google Scholar 

  • International Barley Genome Sequencing Consortium (IBGSC) 2012 A physical, genetic and functional sequence assembly of the barley genome. Nature 491 711–716

    Google Scholar 

  • International Rice Genome Sequencing Project (IRGSP) 2005 The map-based sequence of the rice genome. Nature 436 793–800

    Google Scholar 

  • Jain M 2012 Next-generation sequencing technologies for gene expression profiling in plants. Brief. Funct. Genomics 11 63–70

    CAS  PubMed  Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, et al. 2013 A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J. 74 715–729

    CAS  PubMed  Google Scholar 

  • Jannink JL, Lorenz AJ and Iwata H 2010 Genomic selection in plant breeding: from theory to practice. Brief Funct. Genomics 9 166–177

    CAS  PubMed  Google Scholar 

  • Jhanwar S, Priya P, Garg R, Parida SK, Tyagi AK and Jain M 2012 Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnol. J. 10 690–702

    CAS  PubMed  Google Scholar 

  • Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, et al. 2013 Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496 91–95

    CAS  PubMed  Google Scholar 

  • Joseph M, Gopala Krishnan S, Sharma RK, Singh VP, Singh AK, Singh NK and Mohapatra T 2004 Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular marker-assisted selection in rice. Mol. Breed. 13 377–387

    CAS  Google Scholar 

  • Kapazoglou A, Engineer C, Drosou V, Kalloniati C, Tani E, Tsaballa A, Kouri ED, Ganopoulos I, et al. 2012 The study of two barley type I-like MADS-box genes as potential targets of epigenetic regulation during seed development. BMC Plant Biol. 12 166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kashkush K, Feldman M, Levy AA 2003 Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat. Genet. 33 102–106

    CAS  PubMed  Google Scholar 

  • Kashkush K, Khasdan V 2007 Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics 177 1975–1985

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kharabian-Masouleh A, Waters DLE, Reinke RF, Ward R and Henry RJ 2012 SNP in starch biosynthesis genes associated with nutritional and functional properties of rice. Sci. Rep. 2 557

    PubMed Central  PubMed  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, et al. 2003 Rice Full-Length cDNA Consortium; Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301 376–379

    PubMed  Google Scholar 

  • Kim TY, Kim HU and Lee SY 2010 Data integration and analysis of biological networks. Curr. Opin Biotechnol. 21 78–84

    Google Scholar 

  • Kohler C, Wolff P and Spillane C 2012 Epigenetic mechanisms underlying genomic imprinting in plants. Annu. Rev. Plant Biol. 63 18.1–18.22

    Google Scholar 

  • Kota R, Varshney RK, Prasad M, Zhang H, Stein N and Graner A 2007 EST-derived single nucleotide polymorphism markers for assembling genetic and physical maps of the barley genome. Funct. Integr. Genomics 8 223–233

    PubMed  Google Scholar 

  • Kujur A, Bajaj D, Saxena MS, Tripathi S, Upadhyaya HD, Gowda CL, Singh S, Jain M, et al. 2013 Functionally relevant microsatellite markers from chickpea transcription factor genes for efficient genotyping applications and trait association mapping. DNA Res. 20 355–374

    Google Scholar 

  • Langridge P and Fleury D 2011 Making the most of 'omics' for crop breeding. Trends Biotechnol. 29 33–40

    CAS  PubMed  Google Scholar 

  • Li H, Freeling M and Lisch D 2010 Epigenetic reprogramming during vegetative phase change in maize. Proc. Natl. Acad. Sci. USA 107 22184–22189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Wang X, He K, Ma Y, Su N, He H, Stolc V, Tongprasit W, et al. 2008 High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20 259–276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, et al. 2011 Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet. 43 1266–1269

    CAS  PubMed  Google Scholar 

  • Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, et al. 2013 Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496 87–90

    CAS  PubMed  Google Scholar 

  • Lobell DB and Field CB 2007 Global scale climate-crop yield relationships and the impacts of recent warming. Environ. Res. Lett 2 004000 7 pp

  • Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, et al. 2010 Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res. 20 1238–1249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ and Seymour GB 2006 A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet. 38 948–952

    CAS  PubMed  Google Scholar 

  • Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X and Zhang Q 2010 Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc. Natl. Acad. Sci. USA 107 19579–19584

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCouch SR, Sweeney M, Li J, Jiang H, Thomson M, Septiningsih E, Edwards J, Moncada P, et al. 2007 Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 154 317–339

    CAS  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, et al. 2002 Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9 199–207

    Google Scholar 

  • McNally KL, Bruskiewich R, Mackill D, Buell CR, Leach JE and Leung H 2006 Sequencing multiple and diverse rice varieties: connecting whole-genome variation with phenotypes. Plant Physiol. 141 26–31

    CAS  PubMed Central  PubMed  Google Scholar 

  • McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, et al. 2009 Genome-wide SNP variation reveals relationships among landraces and modern varieties of rice. Proc. Natl. Acad. Sci. USA 106 12273–12278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Metzker ML 2010 Sequencing technologies - the next generation. Nat. Rev. Genet. 11 31–46

    CAS  PubMed  Google Scholar 

  • Meuwissen TH, Hayes BJ and Goddard ME 2001 Prediction of total genetic value using genome-wide dense marker maps. Genetics 157 1819–1829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R and Varshney RK 2012 Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor. Appl. Genet. 125 625–645

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mirouze M and Paszkowski J 2011 Epigenetic contribution to stress adaptation in plants. Curr. Opin. Plant Biol. 14 267–274

    CAS  PubMed  Google Scholar 

  • Mittler R 2006 Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11 15–19

    CAS  PubMed  Google Scholar 

  • Miura K, Ashikari M and Matsuoka M 2011 The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci. 16 319–326

    Google Scholar 

  • Mukhopadhyay P, Singla-Pareek SL, Reddy MK and Sopory SK 2013 Stress-mediated alterations in chromatin architecture correlate with down-regulation of a gene encoding 60S rpL32 in rice. Plant Cell Physiol. 54 528–540

    CAS  PubMed  Google Scholar 

  • Nayak SN, Zhu H, Varghese N, Datta S, Choi HK, Horres R, Jüngling R, Singh J, et al. 2010 Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor. Appl. Genet. 120 1415–1441

    CAS  PubMed Central  PubMed  Google Scholar 

  • Negrão S, Almadanim MC, Pires IS, Abreu IA, Maroco J, Courtois B, Gregorio GB, McNally KL, et al. 2013 New allelic variants found in key rice salt-tolerance genes: an association study. Plant Biotechnol. J. 11 87–100

    PubMed  Google Scholar 

  • Oliver SN, Finnegan EJ, Dennis ES, Peacock WJ and Trevaskis B 2009 Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc. Natl. Acad. Sci. U S A 106 8386–8391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pachauri RK and Reisinger A 2007 Intergovernmental Panel on Climate Change (IPCC); in Climate change synthesis report (eds) IPCC, Geneva

  • Parida SK, Dalal V, Singh NK and Mohapatra T 2009b Genic non-coding microsatellites in the rice genome: characterization, marker design and use in assessing genetic and evolutionary relationships among domesticated groups. BMC Genomics 10 140

    PubMed Central  PubMed  Google Scholar 

  • Parida SK, Kalia SK, Kaul S, Dalal V, Hemaprabha G, Selvi A, Pandit A, Singh A, et al. 2009a Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor. Appl. Genet. 118 327–338

    CAS  PubMed  Google Scholar 

  • Parida SK, Mukerji M, Singh AK, Singh NK and Mohapatra T 2012 SNPs in stress-responsive rice genes: validation, genotyping, functional relevance and population structure. BMC Genomics 13 426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parida SK, Rajkumar KA, Dalal V, Singh NK and Mohapatra T 2006 Unigene derived microsatellite markers for the cereal genomes. Theor. Appl. Genet. 112 808–817

    CAS  PubMed  Google Scholar 

  • Parida SK, Yadava DK and Mohapatra T 2010 Microsatellites in Brassica unigenes: Relative abundance, marker design and use in comparative physical mapping and genome analysis. Genome 53 55–67

    CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, et al. 2009 The Sorghum bicolor genome and the diversification of grasses Nature 457 551–556

  • Pautasso M, Döring TF, Garbelotto M, Pellis L and Jeger MJ 2012 Impacts of climate change on plant diseases opinions and trends. Eur. J. Plant Pathol. 133 295–313

    Google Scholar 

  • Pfender WF and Vollmer SS 1999 Freezing temperature effect on survival of Puccinia graminis subsp. Graminicola in Festuca arundinacea and Lolium perenne. Plant Disease 83 1058–1062

    Google Scholar 

  • Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, Donaldson MA, Nickerson DA and Boyce-Jacino M 1999 Mining SNPs from EST databases. Genome Res. 9 167–174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Potato Genome Sequencing Consortium (PGSC) 2011 Genome sequence and analysis of the tuber crop potato. Nature 475 189–195

    Google Scholar 

  • Raghavan C, Naredo MEB, Wang HH, Atienza G, Liu B, Qiu FL, McNally KL and Leung H 2007 Rapid method for detecting SNPs on agarose gels and its application in candidate gene mapping. Mol Breed. 19 87–101

    CAS  Google Scholar 

  • Redden R 2013 New approaches for crop genetic adaptation to the abiotic stresses predicted with climate change. Agronomy 3 419–432

    Google Scholar 

  • Reynolds MP and Ortiz R 2010 Adapting crops to climate change: a summary; in Climate change and crop production (eds) MP Reynolds (CAB international) 1–8 pp

  • Rodrigues JA, Ruan R, Nishimura T, Sharma MK, Sharma R, Ronald PC, Fischer RL and Zilberman D 2013 Imprinted expression of genes and small RNA is associated with localized hypomethylation of the maternal genome in rice endosperm. Proc. Natl. Acad. Sci. U S A 110 7934–7939

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitz RJ, He Y, Valdés-López O, Khan SM, Joshi T, Urich MA, Nery JR, Diers B, et al. 2013 Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res. 23 1663–1674

    Google Scholar 

  • Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, Alix A, McCosh RB, et al. 2013 Patterns of population epigenomic diversity. Nature 495 193–198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, et al. 2010 Genome sequence of the palaeopolyploid soybean. Nature 463 178–183

    CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, et al. 2009 The B73 maize genome: complexity, diversity, and dynamics. Science 326 1112–1115

    CAS  PubMed  Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM and Mackill DJ 2009 Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann. Bot. 103 151–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sethy NK, Shokeen B, Edwards KJ and Bhatia S 2006 Development of microsatellite markers and analysis of intra-specific genetic variability in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 112 1416–1428

    CAS  PubMed  Google Scholar 

  • Shitsukawa N, Tahira C, Kassai K, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kawaura K, et al. 2007 Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. Plant Cell 19 1723–1737

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simon SA, Zhai J, Nandety RS, McCormick KP, Zeng J, Mejia D and Meyers BC 2009 Short-read sequencing technologies for transcriptional analyses. Annu. Rev. Plant Biol. 60 305–333

    CAS  PubMed  Google Scholar 

  • Singh AK, Gopalakrishnan S, Singh VP, Prabhu KV, Mohapatra T, Singh NK, SharmaTR, Nagarajan M, et al. 2011 Marker assisted selection: a paradigm shift in Basmati breeding. Indian J. Genet. 71 120–128

  • Sundaram RM, Vishnupriya MR, Biradar SK, Laha GS, Reddy GA, Shoba Rani N, Sarma NP and Sonti RV 2008 Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 160 411–422

    Google Scholar 

  • Sweeney MT, Thomson MJ, Cho YG, Park YJ, Williamson SH, Bustamante CD and McCouch SR 2007 Global dissemination of a single mutation conferring white pericarp in rice. PLoS Genet. 3 e133

    PubMed Central  PubMed  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, et al. 2013 QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 74 174–183

    CAS  PubMed  Google Scholar 

  • Tan L, Zhang P, Liu F, Wang G, Ye S, Zhu Z, Fu Y, Cai H, et al. 2008 Quantitative trait loci underlying domestication- and yield-related traits in an Oryza sativa x Oryza rufipogon advanced backcross population. Genome 51 692–704

    CAS  PubMed  Google Scholar 

  • Tardieu F and Tuberosa R 2010 Dissection and modelling of abiotic stress tolerance in plants. Curr. Opin. Plant Biol. 13 206–212

    PubMed  Google Scholar 

  • Terpstra IR, Snoek LB, Keurentjes JJ, Peeters AJ and van den Ackerveken G 2010 Regulatory network identification by genetical genomics: signaling downstream of the Arabidopsis receptor-like kinase ERECTA. Plant Physiol. 154 1067–1078

    CAS  PubMed Central  PubMed  Google Scholar 

  • The Brassica rapa Genome Sequencing Project Consortium (BGSPC) 2011 The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43 1035–1039

    Google Scholar 

  • Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK and Sun CQ 2006 Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor. Appl. Genet. 112 570–580

    CAS  PubMed  Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S and Comai L 2007 Mutant resources in rice discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. 7 19

    PubMed Central  PubMed  Google Scholar 

  • Tomato Genome Consortium (TGC) 2012 The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485 635–641

    Google Scholar 

  • Upadhyaya HD and Ortiz R 2001 A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theor. Appl. Genet. 102 1292–1298

    Google Scholar 

  • Upadhyaya HD, Bramel PJ and Singh S 2001 Development of a chickpea core subset using geographic distribution and quantitative traits. Crop Sci. 41 206–210

    Google Scholar 

  • Upadhyaya HD, Ortiz R, Bramel PJ and Singh S 2002 Phenotypic diversity for morphological and agronomic characteristics in chickpea core collection. Euphytica 123 333–342

    Google Scholar 

  • Vahdati K and Leslie C 2013 Abiotic stress - plant responses and applications in agriculture (eds) InTech doi 10.5772/45842

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, et al. 2012 Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat. Biotechnol. 30 83–89

    CAS  Google Scholar 

  • Varshney RK, Close TJ, Singh NK, Hoisington DA and Cook DR 2009a Orphan legume crops enter the genomics era. Curr. Opin. Plant Biol. 12 202–210

    PubMed  Google Scholar 

  • Varshney RK, Graner A and Sorrells ME 2005 Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 23 48–55

    CAS  PubMed  Google Scholar 

  • Varshney RK, Hiremath PJ, Lekha PT, Kashiwagi J, Jayasree B, Deokar AA, Vadez V, Xiao Y, et al. 2009b A comprehensive resource of drought-and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L). BMC Genomics 10 523

    PubMed Central  PubMed  Google Scholar 

  • Varshney RK, Nayak SN, May GD and Jackson SA 2009c Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 27 522–530

    CAS  PubMed  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, et al. 2013 Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 31 240–246

    CAS  PubMed  Google Scholar 

  • Wang C, Chen S and Yu S 2011 Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice. Theor. Appl. Genet. 122 905–913

    PubMed  Google Scholar 

  • Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, et al. 2008 Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet. 40 1370–1374

    CAS  PubMed  Google Scholar 

  • Wang X, Elling AA, Li X, Li N, Peng Z, He G, Sun H, Qi Y, et al. 2009 Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21 1053–1069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waters AJ, Makarevitch I, Eichten SR, Swanson-Wagner RA, Yeh CT, Xu W, Schnable PS, Vaughn MW, et al. 2011 Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm. Plant Cell 23 4221–4233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waugh MM, Kim DH, Ferrin DM and Stanghellini ME 2003 Reproductive potential of Monosporascus cannonballus. Plant Disease 87 45–50

    Google Scholar 

  • Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MR, Ramos-Pamplona M, Mauleon R, et al. 2005 Chemical and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol. Biol. 59 85–97

    CAS  PubMed  Google Scholar 

  • Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, et al. 2010 Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc. Natl. Acad. Sci. USA 107 10578–10583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Lu Y, Xie C, Gao S, Wan J and Prasanna B 2012 Whole-genome strategies for marker-assisted plant breeding. Mol. Breed. 29 833–854

    Google Scholar 

  • Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KF, et al. 2011 The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480 520–524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J and Zhang Q 2011 Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One 6 e17595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zavala JA, Casteel CL, Delucia EH and Berenbaum MR 2008 Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proc. Natl. Acad. Sci. USA 105 5129–5133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B, Brooks MD and Zilberman D 2010 Local DNA hypomethylation activates genes in rice endosperm. Proc. Natl. Acad. Sci. U S A 107 18729–18734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Zhang D, Wang M, Sun J, Qi Y, Li J, Wei X, Han L, et al. 2011a A core collection and mini core collection of Oryza sativa L. in China. Theor. Appl. Genet. 122 49–61

    Google Scholar 

  • Zhang M, Zhao H, Xie S, Chen J, Xu Y, Wang K, Zhao H, Guan H, et al. 2011b Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm. Proc. Natl. Acad. Sci. U S A 108 20042–20047

    CAS  Google Scholar 

  • Zhang X 2008 The epigenetic landscape of plants. Science 320 489–492

    CAS  PubMed  Google Scholar 

  • Zhang Z, Deng Y, Tan J, Hu S, Yu J and Xue Q 2007 A genome-wide microsatellite polymorphism database for the indica and japonica rice. DNA Res. 14 37–45

    PubMed Central  PubMed  Google Scholar 

  • Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, et al. 2011 Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2 467

    PubMed Central  PubMed  Google Scholar 

  • Zhong S, Fei Z, Chen YR, Zheng Y, Huang M, Vrebalov J, McQuinn R, Gapper N, et al. 2013 Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat. Biotechnol. 31 154

    CAS  PubMed  Google Scholar 

  • Zhu JK 2008 Epigenome sequencing comes of age. Cell 133 395–397

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the Department of Biotechnology (DBT), India. AK acknowledges the Council of Scientific and Industrial Research (CSIR) for the award of Junior Research Fellowship (JRF). We wish to thank the anonymous referees for critically evaluating the manuscript and providing constructive comments/suggestions to improve its quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup K Parida.

Additional information

MS received 27 December 2012; accepted 07 October 2013

Corresponding editor: Renu Khanna-Chopra

[Kujur A, Saxena MS, Bajaj D, Laxmi and Parida SK 2013 Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants. J. Biosci. 38 1–17] DOI 10.1007/s12038-013-9388-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kujur, A., Saxena, M.S., Bajaj, D. et al. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants. J Biosci 38, 971–987 (2013). https://doi.org/10.1007/s12038-013-9388-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-013-9388-6

Keywords

Navigation