Skip to main content
Log in

Large SNP arrays for genotyping in crop plants

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Genotyping with large numbers of molecular markers is now an indispensable tool within plant genetics and breeding. Especially through the identification of large numbers of single nucleotide polymorphism (SNP) markers using the novel high-throughput sequencing technologies, it is now possible to reliably identify many thousands of SNPs at many different loci in a given plant genome. For a number of important crop plants, SNP markers are now being used to design genotyping arrays containing thousands of markers spread over the entire genome and to analyse large numbers of samples. In this article, we discuss aspects that should be considered during the design of such large genotyping arrays and the analysis of individuals. The fact that crop plants are also often autopolyploid or allopolyploid is given due consideration. Furthermore, we outline some potential applications of large genotyping arrays including high-density genetic mapping, characterization (fingerprinting) of genetic material and breeding-related aspects such as association studies and genomic selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

GBS:

genotyping by sequencing

LD:

linkage disequilibrium

NGS:

next-generation sequencing

PIC:

Polymorphism Information Content

QTL:

quantitatively inherited traits

SNP:

single nucleotide polymorphism

References

  • Akhunov E, Nicolet C and Dvorak J 2009 Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina Golden Gate assay. Theor. Appl. Genet. 119 507–517

    Article  PubMed  CAS  Google Scholar 

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD and Sorrells ME 1993 Optimizing parental selection for genetic linkage maps. Genome 36 181–186

    Article  PubMed  CAS  Google Scholar 

  • Arai-Kichise Y, Shiwa Y, Nagasaki H, Ebana K, Yashikawa H, Yano M and Wakasa K 2011 Discovery of genome-wide DNA polymorphisms in a land race cultivar of Japonica rice by whole-genome sequencing. Plant Cell Physiol. 52 274–282

    Article  PubMed  CAS  Google Scholar 

  • Bachlava E, Taylor CA, Tang S, Bowers JE, Mandel JR, Burke JM and Knapp SJ 2012 SNP discovery and development of a high-density genotyping array for sunflower. PLoS ONE 7 e29814

    Article  PubMed  CAS  Google Scholar 

  • Barbazuk WB, Emrich SJ, Chen HD, Li L and Schnable PS 2007 SNP discovery via 454 transcriptome sequencing. Plant J. 51 910–918

    Article  PubMed  CAS  Google Scholar 

  • Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, et al. 2012 Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS ONE 7 e31745

    Article  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JO, Catchen JM, Blaxter ML 2011 Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12 499–510

    Article  PubMed  CAS  Google Scholar 

  • Deschamps S, la Rota M, Ratashak JP, Biddle P, Thureen D, Farmer A, Luck S, Beatty M, et al. 2010 Rapid genome-wide single nucleotide polymorphism discovery in soybean and rice via deep resequencing of reduced representation libraries with the Illumina genome analyzer. Plant Genome 3 53–68

    Article  CAS  Google Scholar 

  • Durstewitz G, Polley A, Plieske J, Luerssen H, Graner EM, Wieseke R and Ganal MW 2010 SNP discovery by amplicon sequencing and multiplex SNP genotyping in the allopolyploid species Brassica napus. Genome 53 948–956

    Article  PubMed  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES and Mitchell SE 2011 A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6 e19379

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Leach JE, Rogers J, Schnable PS and Eversole K 2010 Crop genome sequencing: lessons and rationales. Trends Plant Sci. 16 77–88

    Article  Google Scholar 

  • Ganal MW, Altmann T and Röder MS 2009 SNP identification in crop plants. Curr. Opin. Plant Biol. 12 211–217

    Article  PubMed  CAS  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner E-M, et al. 2011 A large maize (Zea mays L.) SNP genotyping array: Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6 e28334

    Article  PubMed  CAS  Google Scholar 

  • Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Pfeiffer JA, McMullen MD, et al. 2009a A first-generation haplotype map of maize. Science 326 1115–1117

    Article  PubMed  CAS  Google Scholar 

  • Gore MA, Wright MH, Ersoz ES, Bouffard P, Szekeres ES, Jarvie TP, Hurwitz BL, Narechania A, et al. 2009b Large-scale discovery of gene-enriched SNPs. Plant Genome 2 121–133

    Article  CAS  Google Scholar 

  • Gunderson KL, Steemers FJ, Ren H, Ng P, Zhou L, Tsan C, Chang W, Bullis D, et al. 2006 Whole-genome genotyping. Methods Enzymol. 410 359–376

    Article  PubMed  CAS  Google Scholar 

  • Hamblin MT, Buckler ES and Jannink JL 2011 Population genetics of genomics-based crop improvement methods. Trends Genet. 27 98–106

    Article  PubMed  CAS  Google Scholar 

  • Hasenmeyer G, Schmutzer T, Seidel M, Zhou R, Mascher M, Schön C-C, Taudien S, Scholz U, Mayer KF and Bauer E 2011 From RNA-seq to large-scale genotyping: genomics resources for rye (Secale cereale L.). BMC Plant Biol. 11 131

    Article  Google Scholar 

  • Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, Bhanuprakash A, et al. 2011 Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol. J. 9 922–931

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zaho Q, Wang L, Wang A, Guan J, Fan D, et al. 2009 High-throughput genotyping by whole-genome resequencing. Genome Res. 19 1068–1076

    Article  PubMed  CAS  Google Scholar 

  • International HapMap Consortium 2007 A second generation human haplotype map of over 3.1 million SNPs. Nature 449 851–61

    Article  Google Scholar 

  • Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, et al. 2010 Genome-wide patterns of genetic variation among elite maize inbred lines. Nat. Genet. 42 1027–1030

    Article  PubMed  CAS  Google Scholar 

  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, et al. 2010 Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 42 1053–1059

    Article  PubMed  CAS  Google Scholar 

  • McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP and Hirschhorn JN 2008 Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9 356–369

    Article  PubMed  CAS  Google Scholar 

  • McGall GH and Christians FC 2002 High-density genechip oligonucleotide probe arrays. Adv. Biochem. Eng. Biotechnol. 77 21–42

    PubMed  CAS  Google Scholar 

  • Metzker ML 2010 Sequencing technologies – the next generation. Nat. Rev. Genet. 11 31–46

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ and Goddard ME 2001 Prediction of total genetic value using genome-wide dense marker maps. Genetics 157 1819–1829

    PubMed  CAS  Google Scholar 

  • Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, et al. 2011 Genetic structure and domestication history of the grape. Proc. Natl. Acad. Sci. USA 108 3530–3535

    Article  PubMed  CAS  Google Scholar 

  • Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D and Sedoroff RR 2008 High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9 312

    Article  PubMed  Google Scholar 

  • Peiffer DA and Gunderson KL 2009 Design of tag SNP whole genome genotyping arrays Methods Mol. Biol. 529 51–61

    CAS  Google Scholar 

  • Rafalski JA 2010 Association genetics in crop improvement. Curr. Opin. Plant Biol. 13 174–180

    Article  PubMed  CAS  Google Scholar 

  • Steemers FJ, Chang W, Lee G, Barker DL, Shen R and Gunderson KL 2006 Whole-genome genotyping with the single-base extension assay. Nat. Methods 3 31–3

    Article  PubMed  CAS  Google Scholar 

  • Van Orsouw NJ, Hogers RCJ, Janssen A, Yalcin F, Snoeeijers S, Verstege E, Schneiders H, van der Poel H, et al. 2007 Complexity reduction of polymorphic sequences (CRoPS): A novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE 2 e1172

    Article  PubMed  Google Scholar 

  • Varshney RK, Nayak SN, May GD and Jackson SA 2009 Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 27 522–530

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD and Crouch J 2009 Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS ONE 24 e8451

    Article  Google Scholar 

  • You FM, Huo N, Deal KR, Gu YQ, Luo M-C, McGuire PE, Dvorak J and Anderson OD 2011 Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genomics 12 59

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, et al. 2011 Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2 467

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of the technical staff at TraitGenetics during SNP marker development and the analysis of many samples using genotyping arrays. Research in the area of large-scale genotyping at TraitGenetics has in part been funded by grants from the German Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin W Ganal.

Additional information

[Ganal MW, Polley A, Graner E-M, Plieske J, Wieseke R, Luerssen H and Durstewitz G 2012 Large SNP arrays for genotyping in crop plants. J. Biosci. 37 1–8] DOI 10.1007/s12038-012-9225-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganal, M.W., Polley, A., Graner, EM. et al. Large SNP arrays for genotyping in crop plants. J Biosci 37, 821–828 (2012). https://doi.org/10.1007/s12038-012-9225-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-012-9225-3

Keywords

Navigation