Skip to main content
Log in

Nano-composition of riboflavin-nafion functional film and its application in biosensing

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

A novel nafion-riboflavin membrane was constructed and characterized by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy and cyclic voltammetric techniques. The estimated average diameter of the designed nanoparticles was about 60 nm. The functional membrane showed a quasi-reversible electrochemical behaviour with a formal potential of −562 ± 5 mV (vs Ag/AgCl) on the gold electrode. Some electrochemical parameters were estimated, indicating that the system has good and stable electron transfer properties. Moreover, horseradish peroxidase (HRP) was immobilized on the riboflavin-nafion functional membrane. The electrochemical behaviour of HRP was quasi-reversible with a formal potential of 80 ± 5 mV (vs Ag/AgCl). The HRP in the film exhibited good catalytic activity towards the reduction of H2O2. It shows a linear dependence of its cathodic peak current on the concentration of H2O2, ranging from 10 to 300 µM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HRP:

horseradish peroxidase

nafion:

nafion perfluorosulphonated ion-exchange resin

SEM:

scanning electron microscopy

TEM:

transmission electron microscopy

References

  • Andrieux C P, Audebert P, Divisia-Blohorn B, Aldebert P and Michalak F 1990 Electrochemistry in hydrophobic nafion gels; J. Electroanal. Chem. 296 117–139

    Article  CAS  Google Scholar 

  • Arvand M, Sohrabnezhad S, Mousavi M F, Shamsipur M and Zanjanchi M A 2003 Electrochemical study of methylene blue incorporated into mordenite type zeolite and its application for amperometric determination of ascorbic acid in real samples; Anal. Chim. Acta 491 193–201

    Article  CAS  Google Scholar 

  • Cai X, Rivas G, Farias P A M, Shiraishi H, Wang J and Palecek E 1996 Evaluation of different carbon electrodes for stripping analysis of nucleic acids; Electroanalysis 8 753–758

    Article  CAS  Google Scholar 

  • Chaubey A and Malhotra B D 2002 Mediated biosensors; Biosens. Bioelectron. 17 441–456

    Article  CAS  Google Scholar 

  • Chen H Y, Ju H X and Xun Y G 1994 Methylene blue/perfluorosulfonated ionomer modified microcylinder carbon fiber electrode and its application for the determination of hemoglobin; Anal. Chem. 66 4538–4542

    Article  CAS  Google Scholar 

  • Clarke M J, Harrison K L, Johnston K P and Howdle S M 1997 Water in carbon dioxide microemulsions: a spectroscopic study of a new environment for aqueous chemistry; J. Am. Chem. Soc. 119 6399–6406

    Article  CAS  Google Scholar 

  • Gao Y, Li N, Zheng L, Zhao X, Zhang S, Han B and Ganzuo W H 2006 A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween 20/H2O microemulsions and their performance characterization by UV-vis spectroscopy; Green Chem. 8 43–49

    Article  CAS  Google Scholar 

  • Gogol E V, Evtugyn G A, Marty J L, Budnikov H C and Winter V G 2000 Amperometric biosensors on nafion coated screen-printed electrodes for the determination of cholinesterase inhibitors; Talanta 53 379–389

    Article  CAS  Google Scholar 

  • Gorton L, Karan H I, Hale P D, Inagaki T, Okamoto Y and Skothein T A 1991 An amperometric glucose electrode based on carbon paste, chemically modified with glucose dehydrogenase, nicotinamide adenine dinucleotide, and a phenoxazine mediator, coated with a poly(ester sulfonic acid) cation exchanger; Anal. Chim. Acta 249 43–54

    Article  CAS  Google Scholar 

  • Honeychurch J and Rechnitz G A 1998 Voltammetry of adsorbed molecules. Part 2: irreversible redox systems; Electroanalysis 10 453–457

    Article  CAS  Google Scholar 

  • Hong J, Ghourchian H, Rezaei-Zarchi S, Moosavi-Movahedi A A, Ahmadian S and Saboury A A 2007 Nafion-methylene blue functional membrane and its application in chemical-and biosensing; Anal. Lett. 40 483–496

    Article  CAS  Google Scholar 

  • John S A and Ramaraj R 2004 Microenvironment effects on the electrochemical and photoelectrochemical properties of thionine loaded nafion films; J. Electroanal. Chem. 561 119–126

    Article  Google Scholar 

  • Karyakin A A, Puganova E A, Budashov I A, Kurochkin I N, Karyakina E E, Levchenko V A, Matveyenko V N and Varfolomeyev S D 2004 Prussian blue based nanoelectrode arrays for H2O2 detection; Anal. Chem. 76 474–478

    Article  CAS  Google Scholar 

  • Khoo S B and Chen F 2002 Studies of sol-gel ceramic film incorporating methylene blue on glassycarbon: an electrocatalytic system for the simultaneous determination of ascorbic and uric acids; Anal. Chem. 74 5734–5741

    Article  CAS  Google Scholar 

  • Kong Y T, Boopathi M and Shim Y B 2003 Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode; Biosens. Bioelectron. 19 227–232

    Article  CAS  Google Scholar 

  • Kubota L T, Gushikem Y, Perez J and Tanaka A A 1995 Electrochemical properties of iron phthalocyanine immobilized on titanium(IV) oxide coated on silica gel surface; Langmuir 11 1009–1015

    Article  CAS  Google Scholar 

  • Kurzawa C, Hengstenberg A and Schuhmann W 2002 Immobilization method for the preparation of biosensors based on pH shift-induced deposition of biomolecule-containing polymer films; Anal. Chem. 74 355–361

    Article  CAS  Google Scholar 

  • Laviron E 1982 Voltammetric methods for the study of adsorbed species; in Electroanalytical chemistry (ed.) A J Bard (New York: Dekker) p. 53

    Google Scholar 

  • Liu H Y and Deng J Q 1995 An amperometric lactate sensor employing tetrathiafulvalene in nafion film as electron shuttle; Electrochim. Acta 40 1845–1849

    Article  CAS  Google Scholar 

  • McNeil C J, Greenough K R, Weeks P A and Cooper J M 1992 Electrochemical sensors for direct reagentless measurement of superoxide production by human neutrophils; Free Radical Res. Commun. 17 399–406

    Article  CAS  Google Scholar 

  • Miura N, Kato H, Yamazoe N, Seiyama T and Kagaku D 1984 Amperometric gas sensor using solid-state proton conductor sensitive to hydrogen in air at room temperature; Chem. Lett. 11 1905–1909

    Article  Google Scholar 

  • Munteanu F D, Kubota L T and Gorton L 2001 Effect of pH on the catalytic electro oxidation of NADH using different two-electron mediators immobilised on zirconium phosphate; J. Electroanal. Chem. 509 2–10

    Article  CAS  Google Scholar 

  • Murray R W 1984 Chemically modified electrodes; in Electroanalytical chemistry (ed.) A J Bard (New York: Dekker) p. 191

    Google Scholar 

  • Ogino Y, Takagi K, Kano K and Iketa T 1995 Reaction between diaphorase and quinone compounds in bioelectrocatalytic redox reaction of NADH and NAD(+); J. Electroanal. Chem. 396 517–524

    Article  Google Scholar 

  • Pessoa C A, Gushikem Y, Kubota L T and Gorton L 1997 Preliminary electrochemical study of phenothiazines and phenoxazines immobilized on zirconium phosphate; J. Electroanal. Chem. 431 23–27

    Article  CAS  Google Scholar 

  • Richard P B and Erno L 1994 Recomendations for nomenclature of ion-selective electrodes; IUPAC 66 2527–2536

    Google Scholar 

  • Rolison D R 1990 Zeolite-modified electrodes and electrodemodified zeolites; Chem. Rev. 90 867–878

    Article  CAS  Google Scholar 

  • Scheller F W, Bistolas N, Liu S, Jänchen M, Katterle M and Wollenberger U 2005 Thirty years of haemoglobin electrochemistry; Adv. Coll. Interf. Sci. 116 111–120

    Article  CAS  Google Scholar 

  • Tian Y, Ariga T, Takashima N and Okajima T 2004 Self-assembled monolayer suitable for electron transfer promotion of copper, zinc-superoxide dismutase; Electrochem. Comm. 6 609–614

    Article  CAS  Google Scholar 

  • Yamashita M, Rosatto S S and Kubota L T 2002 Electrochemical comparative study of riboflavin, FMN and FAD immobilized on the silica gel modified with zirconium oxide; J. Braz. Chem. Soc. 13 635–641

    Article  CAS  Google Scholar 

  • Yao H, Li N, Xu S, Xu J Z, Zhu J J and Chen H Y 2005 Electrochemical study of a new methylene blue/silicon oxide nanocomposition mediator and its application for stable biosensor of hydrogen peroxide; Biosens. Bioelectron. 21 372–377

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Saboury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezaei-Zarchi, S., Saboury, A.A., Javed, A. et al. Nano-composition of riboflavin-nafion functional film and its application in biosensing. J Biosci 33, 279–287 (2008). https://doi.org/10.1007/s12038-008-0045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-008-0045-4

Keywords

Navigation