Skip to main content

Advertisement

Log in

Treadmill Exercise Alleviates Brain Iron Dyshomeostasis Accelerating Neuronal Amyloid-β Production, Neuronal Cell Death, and Cognitive Impairment in Transgenic Mice Model of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Brain iron increases with age and abnormal brain iron metabolism is proving increasingly likely to be involved in the pathology of Alzheimer’s disease (AD). The iron-regulatory effect of furin, a ubiquitously expressed proconvertase, might play an important role in AD. Therefore, there is an urgent need to study the effect of furin on iron regulation in AD. For that purpose, we aimed to determine the role of physical exercise in AD associated with brain iron dyshomeostasis. Treadmill exercise attenuated the AD-related abnormal brain iron regulation by furin in vivo, as demonstrated via experiments in aged APP-C105 mice. Next, we examined whether treadmill exercise decreases excessive iron, directly affecting amyloid-β (Aβ) production through the regulation of α-secretase-dependent processing of amyloid protein precursor (APP) involved in the modulation of furin activity. We first observed that cognitive decline and Aβ-induced neuronal cell death were induced by disruption of APP processing via excess iron-induced disruption of furin activity in aged APP-C105 mice. The induced cognitive decline and cell death were attenuated by treadmill exercise. This result suggests that treadmill exercise alleviated cognitive decline and Aβ-induced neuronal cell death by promoting α-secretase-dependent processing of APP through low iron-induced enhancement of furin activity. This is concomitant with decreasing levels of lipid peroxidation products and promoting antioxidant defense enzyme capacities. Therefore, iron-targeted therapeutic strategies involving treadmill exercise might be useful for patients with AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All raw data are available from the corresponding author on reasonable request.

References

  1. Mattson MP (2004) Pathways towards and away from Alzheimer's disease. Nature 430(7000):631–639. https://doi.org/10.1038/nature02621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Selkoe DJ (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766. https://doi.org/10.1152/physrev.2001.81.2.741

    Article  CAS  PubMed  Google Scholar 

  3. Querfurth HW, LaFerla FM (2010) Alzheimer's disease. N Engl J Med 362(4):329–344. https://doi.org/10.1056/NEJMra0909142

    Article  CAS  PubMed  Google Scholar 

  4. Bates KA, Verdile G, Li QX, Ames D, Hudson P, Masters CL, Martins RN (2009) Clearance mechanisms of Alzheimer's amyloid-beta peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatry 14(5):469–486. https://doi.org/10.1038/mp.2008.96

    Article  CAS  PubMed  Google Scholar 

  5. Bertram L, Tanzi RE (2008) Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9(10):768–778. https://doi.org/10.1038/nrn2494

    Article  CAS  PubMed  Google Scholar 

  6. Sando SB, Melquist S, Cannon A, Hutton ML, Sletvold O, Saltvedt I, White LR, Lydersen S et al (2008) APOE epsilon 4 lowers age at onset and is a high risk factor for Alzheimer's disease; a case control study from central Norway. BMC Neurol 8:9. https://doi.org/10.1186/1471-2377-8-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lott IT, Head E (2005) Alzheimer disease and Down syndrome: factors in pathogenesis. Neurobiol Aging 26(3):383–389. https://doi.org/10.1016/j.neurobiolaging.2004.08.005

    Article  CAS  PubMed  Google Scholar 

  8. Gao Y, Tan L, Yu JT, Tan L (2018) Tau in Alzheimer's disease: mechanisms and therapeutic strategies. Curr Alzheimer Res 15(3):283–300. https://doi.org/10.2174/1567205014666170417111859

    Article  CAS  PubMed  Google Scholar 

  9. Cross CE, van der Vliet A, Louie S, Thiele JJ, Halliwell B (1998) Oxidative stress and antioxidants at biosurfaces: plants, skin, and respiratory tract surfaces. Environ Health Perspect 106 Suppl 5(Suppl 5):1241–1251. https://doi.org/10.1289/ehp.98106s51241

    Article  CAS  PubMed  Google Scholar 

  10. Ang ET, Tai YK, Lo SQ, Seet R, Soong TW (2010) Neurodegenerative diseases: exercising toward neurogenesis and neuroregeneration. Front Aging Neurosci 2. https://doi.org/10.3389/fnagi.2010.00025

  11. Gallagher JJ, Finnegan ME, Grehan B, Dobson J, Collingwood JF, Lynch MA (2012) Modest amyloid deposition is associated with iron dysregulation, microglial activation, and oxidative stress. J Alzheimers Dis 28(1):147–161. https://doi.org/10.3233/jad-2011-110614

    Article  CAS  PubMed  Google Scholar 

  12. van Rooden S, Doan NT, Versluis MJ, Goos JD, Webb AG, Oleksik AM, van der Flier WM, Scheltens P et al (2015) 7TT2*-weighted magnetic resonance imaging reveals cortical phase differences between early- and late-onset Alzheimer's disease. Neurobiol Aging 36(1):20–26. https://doi.org/10.1016/j.neurobiolaging.2014.07.006

    Article  PubMed  Google Scholar 

  13. Rival T, Page RM, Chandraratna DS, Sendall TJ, Ryder E, Liu B, Lewis H, Rosahl T et al (2009) Fenton chemistry and oxidative stress mediate the toxicity of the beta-amyloid peptide in a Drosophila model of Alzheimer's disease. Eur J Neurosci 29(7):1335–1347. https://doi.org/10.1111/j.1460-9568.2009.06701.x

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873. https://doi.org/10.1038/nrn1537

    Article  CAS  PubMed  Google Scholar 

  15. Kim AC, Lim S, Kim YK (2018) Metal ion effects on Aβ and Tau aggregation. Int J Mol Sci 19(1). https://doi.org/10.3390/ijms19010128

  16. Liu B, Moloney A, Meehan S, Morris K, Thomas SE, Serpell LC, Hider R, Marciniak SJ et al (2011) Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation. J Biol Chem 286(6):4248–4256. https://doi.org/10.1074/jbc.M110.158980

    Article  CAS  PubMed  Google Scholar 

  17. Rottkamp CA, Raina AK, Zhu X, Gaier E, Bush AI, Atwood CS, Chevion M, Perry G et al (2001) Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med 30(4):447–450. https://doi.org/10.1016/s0891-5849(00)00494-9

    Article  CAS  PubMed  Google Scholar 

  18. Perry G, Taddeo MA, Petersen RB, Castellani RJ, Harris PL, Siedlak SL, Cash AD, Liu Q et al (2003) Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease. Biometals 16(1):77–81. https://doi.org/10.1023/a:1020731021276

    Article  CAS  PubMed  Google Scholar 

  19. Myhre O, Utkilen H, Duale N, Brunborg G, Hofer T (2013) Metal dyshomeostasis and inflammation in Alzheimer's and Parkinson's diseases: possible impact of environmental exposures. Oxidative Med Cell Longev 2013:726954–726919. https://doi.org/10.1155/2013/726954

    Article  CAS  Google Scholar 

  20. Bush AI (2013) The metal theory of Alzheimer's disease. J Alzheimers Dis 33(Suppl 1):S277–S281. https://doi.org/10.3233/jad-2012-129011

    Article  PubMed  Google Scholar 

  21. Silvestri L, Camaschella C (2008) A potential pathogenetic role of iron in Alzheimer's disease. J Cell Mol Med 12(5a):1548–1550. https://doi.org/10.1111/j.1582-4934.2008.00356.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–1060. https://doi.org/10.1016/s1474-4422(14)70117-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Altamura S, Muckenthaler MU (2009) Iron toxicity in diseases of aging: Alzheimer's disease, Parkinson's disease and atherosclerosis. J Alzheimers Dis 16(4):879–895. https://doi.org/10.3233/jad-2009-1010

    Article  PubMed  Google Scholar 

  24. Liu JL, Fan YG, Yang ZS, Wang ZY, Guo C (2018) Iron and Alzheimer's disease: from pathogenesis to therapeutic implications. Front Neurosci 12:632. https://doi.org/10.3389/fnins.2018.00632

    Article  PubMed  PubMed Central  Google Scholar 

  25. Choi DH, Kwon IS, Koo JH, Jang YC, Kang EB, Byun JE, Um HS, Park HS et al (2014) The effect of treadmill exercise on inflammatory responses in rat model of streptozotocin-induced experimental dementia of Alzheimer's type. J Exerc Nutr Biochem 18(2):225–233. https://doi.org/10.5717/jenb.2014.18.2.225

    Article  Google Scholar 

  26. Kang EB, Kwon IS, Koo JH, Kim EJ, Kim CH, Lee J, Yang CH, Lee YI et al (2013) Treadmill exercise represses neuronal cell death and inflammation during Aβ-induced ER stress by regulating unfolded protein response in aged presenilin 2 mutant mice. Apoptosis 18(11):1332–1347. https://doi.org/10.1007/s10495-013-0884-9

    Article  CAS  PubMed  Google Scholar 

  27. Koo JH, Kang EB, Oh YS, Yang DS, Cho JY (2017) Treadmill exercise decreases amyloid-β burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer's disease. Exp Neurol 288:142–152. https://doi.org/10.1016/j.expneurol.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  28. Um HS, Kang EB, Leem YH, Cho IH, Yang CH, Chae KR, Hwang DY, Cho JY (2008) Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer's disease in an NSE/APPsw-transgenic model. Int J Mol Med 22(4):529–539

    CAS  PubMed  Google Scholar 

  29. Cho JY, Hwang DY, Kang TS, Shin DH, Hwang JH, Lim CH, Lee SH, Lim HJ et al (2003) Use of NSE/PS2m-transgenic mice in the study of the protective effect of exercise on Alzheimer's disease. J Sports Sci 21(11):943–951. https://doi.org/10.1080/0264041031000140365

    Article  PubMed  Google Scholar 

  30. Schefer V, Talan MI (1996) Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise of different intensity. Exp Gerontol 31(3):387–392. https://doi.org/10.1016/0531-5565(95)02032-2

    Article  CAS  PubMed  Google Scholar 

  31. Becerril-Ortega J, Bordji K, Fréret T, Rush T, Buisson A (2014) Iron overload accelerates neuronal amyloid-β production and cognitive impairment in transgenic mice model of Alzheimer's disease. Neurobiol Aging 35(10):2288–2301. https://doi.org/10.1016/j.neurobiolaging.2014.04.019

    Article  CAS  PubMed  Google Scholar 

  32. Yu R, Topiwala A, Jacoby R, Fazel S (2019) Aggressive behaviors in Alzheimer disease and mild cognitive impairment: systematic review and meta-analysis. Am J Geriatr Psychiatry 27(3):290–300. https://doi.org/10.1016/j.jagp.2018.10.008

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hardy PA, Gash D, Yokel R, Andersen A, Ai Y, Zhang Z (2005) Correlation of R2 with total iron concentration in the brains of rhesus monkeys. J Magn Reson Imaging 21(2):118–127. https://doi.org/10.1002/jmri.20244

    Article  PubMed  Google Scholar 

  34. Xian-hui D, Wei-juan G, Tie-mei S, Hong-lin X, Jiang-tao B, Jing-yi Z, Xi-qing C (2015) Age-related changes of brain iron load changes in the frontal cortex in APPswe/PS1ΔE9 transgenic mouse model of Alzheimer's disease. J Trace Elem Med Biol 30:118–123. https://doi.org/10.1016/j.jtemb.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  35. Belaidi AA, Bush AI (2016) Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics. J Neurochem 139 Suppl 1:179–197. https://doi.org/10.1111/jnc.13425

    Article  CAS  PubMed  Google Scholar 

  36. Moos T, Rosengren Nielsen T, Skjørringe T, Morgan EH (2007) Iron trafficking inside the brain. J Neurochem 103(5):1730–1740. https://doi.org/10.1111/j.1471-4159.2007.04976.x

    Article  CAS  PubMed  Google Scholar 

  37. Ashraf A, Clark M, So PW (2018) The Aging of Iron Man. Front Aging Neurosci 10:65. https://doi.org/10.3389/fnagi.2018.00065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith MA, Wehr K, Harris PL, Siedlak SL, Connor JR, Perry G (1998) Abnormal localization of iron regulatory protein in Alzheimer's disease. Brain Res 788(1-2):232–236. https://doi.org/10.1016/s0006-8993(98)00002-x

    Article  CAS  PubMed  Google Scholar 

  39. Crielaard BJ, Lammers T, Rivella S (2017) Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov 16(6):400–423. https://doi.org/10.1038/nrd.2016.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu LN, Qian ZM, Wu KC, Yung WH, Ke Y (2017) Expression of Iron transporters and pathological hallmarks of Parkinson's and Alzheimer's Diseases in the brain of young, adult, and aged rats. Mol Neurobiol 54(7):5213–5224. https://doi.org/10.1007/s12035-016-0067-0

    Article  CAS  PubMed  Google Scholar 

  41. Yang H, Yang M, Guan H, Liu Z, Zhao S, Takeuchi S, Yanagisawa D, Tooyama I (2013) Mitochondrial ferritin in neurodegenerative diseases. Neurosci Res 77(1-2):1–7. https://doi.org/10.1016/j.neures.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  42. Wang L, Yang H, Zhao S, Sato H, Konishi Y, Beach TG, Abdelalim EM, Bisem NJ et al (2011) Expression and localization of mitochondrial ferritin mRNA in Alzheimer's disease cerebral cortex. PLoS One 6(7):e22325. https://doi.org/10.1371/journal.pone.0022325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu WS, Zhao YS, Shi ZH, Chang SY, Nie GJ, Duan XL, Zhao SM, Wu Q et al (2013) Mitochondrial ferritin attenuates β-amyloid-induced neurotoxicity: reduction in oxidative damage through the Erk/P38 mitogen-activated protein kinase pathways. Antioxid Redox Signal 18(2):158–169. https://doi.org/10.1089/ars.2011.4285

    Article  CAS  PubMed  Google Scholar 

  44. Gao G, Chang YZ (2014) Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases. Front Pharmacol 5:19. https://doi.org/10.3389/fphar.2014.00019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang D, Zhang Q, Hu X, Wang W, Zhu X, Yuan Z (2018) Pharmacodynamics in Alzheimer's disease model rats of a bifunctional peptide with the potential to accelerate the degradation and reduce the toxicity of amyloid β-Cu fibrils. Acta Biomater 65:327–338. https://doi.org/10.1016/j.actbio.2017.10.039

    Article  CAS  PubMed  Google Scholar 

  46. Hwang EM, Kim SK, Sohn JH, Lee JY, Kim Y, Kim YS, Mook-Jung I (2006) Furin is an endogenous regulator of alpha-secretase associated APP processing. Biochem Biophys Res Commun 349(2):654–659. https://doi.org/10.1016/j.bbrc.2006.08.077

    Article  CAS  PubMed  Google Scholar 

  47. Bishop GM, Robinson SR, Liu Q, Perry G, Atwood CS, Smith MA (2002) Iron: a pathological mediator of Alzheimer disease? Dev Neurosci 24(2-3):184–187. https://doi.org/10.1159/000065696

    Article  CAS  PubMed  Google Scholar 

  48. Tachida Y, Nakagawa K, Saito T, Saido TC, Honda T, Saito Y, Murayama S, Endo T et al (2008) Interleukin-1 beta up-regulates TACE to enhance alpha-cleavage of APP in neurons: resulting decrease in Abeta production. J Neurochem 104(5):1387–1393. https://doi.org/10.1111/j.1471-4159.2007.05127.x

    Article  CAS  PubMed  Google Scholar 

  49. Souza LC, Filho CB, Goes AT, Fabbro LD, de Gomes MG, Savegnago L, Oliveira MS, Jesse CR (2013) Neuroprotective effect of physical exercise in a mouse model of Alzheimer's disease induced by β-amyloid1-40 peptide. Neurotox Res 24(2):148–163. https://doi.org/10.1007/s12640-012-9373-0

    Article  CAS  PubMed  Google Scholar 

  50. Urrutia PJ, Mena NP, Núñez MT (2014) The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol 5:38. https://doi.org/10.3389/fphar.2014.00038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pan Y, Chen Y, Yu X, Wang J, Zhang L, He Y, Zheng Y, Zheng J (2012) The synthesis of a novel chalcone and evaluation for anti-free radical activity and antagonizing the learning impairments in Alzheimer's model. Cell Physiol Biochem 29(5-6):949–958. https://doi.org/10.1159/000188336

    Article  CAS  PubMed  Google Scholar 

  52. Xu PX, Wang SW, Yu XL, Su YJ, Wang T, Zhou WW, Zhang H, Wang YJ et al (2014) Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behav Brain Res 264:173–180. https://doi.org/10.1016/j.bbr.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  53. Um HS, Kang EB, Koo JH, Kim HT, Jin L, Kim EJ, Yang CH, An GY et al (2011) Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer's disease. Neurosci Res 69(2):161–173. https://doi.org/10.1016/j.neures.2010.10.004

    Article  CAS  PubMed  Google Scholar 

  54. Shi ZH, Nie G, Duan XL, Rouault T, Wu WS, Ning B, Zhang N, Chang YZ et al (2010) Neuroprotective mechanism of mitochondrial ferritin on 6-hydroxydopamine-induced dopaminergic cell damage: implication for neuroprotection in Parkinson's disease. Antioxid Redox Signal 13(6):783–796. https://doi.org/10.1089/ars.2009.3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11(2):88. https://doi.org/10.1038/s41419-020-2298-2

    Article  PubMed  PubMed Central  Google Scholar 

  56. Do K, Laing BT, Landry T, Bunner W, Mersaud N, Matsubara T, Li P, Yuan Y et al (2018) The effects of exercise on hypothalamic neurodegeneration of Alzheimer's disease mouse model. PLoS One 13(1):e0190205. https://doi.org/10.1371/journal.pone.0190205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This manuscript is a revision of the first author’s Ph.D. dissertation from Korea National Sport University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DH Choi, Y Jang, and JY Cho; data collection and analyze data: DH Choi, KC Kwon, DJ Hwang, and JH Koo; result interpretation: HS Um, HS Song, JS Kim, Y Jang, and JY Cho; manuscript draft: DH Choi, Y Jang, and JY Cho; manuscript editing and revising: Y Jang and JY Cho.

Corresponding authors

Correspondence to Yongchul Jang or Joon-Yong Cho.

Ethics declarations

Ethics Approval

All experimental procedures were approved by the Institutional Animal Care and Use Committee of Korea National Sport University and by the Korea Food and Drug Administration (FDA).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, DH., Kwon, KC., Hwang, DJ. et al. Treadmill Exercise Alleviates Brain Iron Dyshomeostasis Accelerating Neuronal Amyloid-β Production, Neuronal Cell Death, and Cognitive Impairment in Transgenic Mice Model of Alzheimer’s Disease. Mol Neurobiol 58, 3208–3223 (2021). https://doi.org/10.1007/s12035-021-02335-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02335-8

Keywords

Navigation