Skip to main content

Advertisement

Log in

Lysosomal Quality Control in Prion Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Prion diseases are transmissible, familial or sporadic. The prion protein (PrP), a normal cell surface glycoprotein, is ubiquitously expressed throughout the body. While loss of function of PrP does not elicit apparent phenotypes, generation of misfolded forms of the protein or its aberrant metabolic isoforms has been implicated in a number of neurodegenerative disorders such as scrapie, kuru, Creutzfeldt-Jakob disease, fatal familial insomnia, Gerstmann-Sträussler-Scheinker and bovine spongiform encephalopathy. These diseases are all phenotypically characterised by spongiform vacuolation of the adult brain, hence collectively termed as late-onset spongiform neurodegeneration. Misfolded form of PrP (PrPSc) and one of its abnormal metabolic isoforms (the transmembrane CtmPrP) are known to be disease-causing agents that lead to progressive loss of structure or function of neurons culminating in neuronal death. The aberrant forms of PrP utilise and manipulate the various intracellular quality control mechanisms during pathogenesis of these diseases. Amongst these, the lysosomal quality control machinery emerges as one of the primary targets exploited by the disease-causing isoforms of PrP. The autophagosomal-lysosomal degradation pathway is adversely affected in multiple ways in prion diseases and may hence be regarded as an important modulator of neurodegeneration. Some of the ESCRT pathway proteins have also been shown to be involved in the manifestation of disease phenotype. This review discusses the significance of the lysosomal quality control pathway in affecting transmissible and familial types of prion diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

BSE:

Bovine spongiform encephalopathy

CJD:

Creutzfeldt-Jakob disease

ECR:

Endosomal recycling compartment

ERAD:

ER-associated degradation

ESCRT:

Endosomal sorting complex required for transport

FFI:

Fatal familial insomnia

GPI:

Glycosylphosphatidylinositol

GSS:

Gerstmann-Straussler-Scheinker syndrome

HD:

Huntington’s disease

MGRN1:

Mahogunin RING Finger1

MVB:

Multivesicular body

PD:

Parkinson’s disease

PIPLC:

Phosphatidylinositol-specific phospholipase C

PrP:

Prion

RESET:

Rapid ER stress-induced export

sCJD:

Sporadic Creutzfeldt-Jakob disease

TGN:

Trans-Golgi network

UPS:

Ubiquitin proteasomal system

References

  1. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16(6):574–581. doi:10.1038/nsmb.1591

    Article  CAS  PubMed  Google Scholar 

  2. Amm I, Sommer T, Wolf DH (2014) Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta 1843(1):182–196. doi:10.1016/j.bbamcr.2013.06.031

    Article  CAS  PubMed  Google Scholar 

  3. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  4. Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11(11):777–788. doi:10.1038/nrm2993

    Article  CAS  PubMed  Google Scholar 

  5. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332. doi:10.1038/nature10317

    Article  CAS  PubMed  Google Scholar 

  6. Muchowski PJ (2002) Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron 35(1):9–12

    Article  CAS  PubMed  Google Scholar 

  7. Sawkar AR, D’Haeze W, Kelly JW (2006) Therapeutic strategies to ameliorate lysosomal storage disorders—a focus on Gaucher disease. Cell Mol Life Sci 63(10):1179–1192

    Article  CAS  PubMed  Google Scholar 

  8. Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    Article  CAS  PubMed  Google Scholar 

  9. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49–60

    Article  CAS  PubMed  Google Scholar 

  10. Bolton DC, McKinley MP, Prusiner SB (1982) Identification of a protein that purifies with the scrapie prion. Science 218(4579):1309–1311

    Article  CAS  PubMed  Google Scholar 

  11. Hegde RS, Mastrianni JA, Scott MR, DeFea KA, Tremblay P, Torchia M et al (1998) A transmembrane form of the prion protein in neurodegenerative disease. Science 279(5352):827–834

    Article  CAS  PubMed  Google Scholar 

  12. Dai C, Whitesell L, Rogers AB, Lindquist S (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130(6):1005–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koulov AV, LaPointe P, Lu B, Razvi A, Coppinger J, Dong MQ et al (2010) Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol Biol Cell 21(6):871–884. doi:10.1091/mbc.E09-12-1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cuervo AM, Bergamini E, Brunk UT, Dröge W, Ffrench M, Terman A (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1(3):131–140

    Article  PubMed  Google Scholar 

  15. Kovacs GG, Budka H (2008) Prion diseases: from protein to cell pathology. Am J Pathol 172(3):555–565. doi:10.2353/ajpath.2008.070442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aguzzi A, Heikenwalder M, Polymenidou M (2007) Insights into prion strains and neurotoxicity. Nat Rev Mol Cell Biol 8(7):552–561

    Article  CAS  PubMed  Google Scholar 

  17. Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318(5852):930–936

    Article  CAS  PubMed  Google Scholar 

  18. Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95(25):13363–13383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prusiner SB, Scott MR (1997) Genetics of prions. Annu Rev Genet 31:139–175

    Article  CAS  PubMed  Google Scholar 

  20. Puoti G, Bizzi A, Forloni G, Safar JG, Tagliavini F, Gambetti P (2012) Sporadic human prion diseases: molecular insights and diagnosis. Lancet Neurol 11(7):618–628. doi:10.1016/S1474-4422(12)70063-7

    Article  CAS  PubMed  Google Scholar 

  21. Hetz CA, Soto C (2006) Stressing out the ER: a role of the unfolded protein response in prion-related disorders. Curr Mol Med 6(1):37–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tateishi J, Brown P, Kitamoto T, Hoque ZM, Roos R, Wollman R et al (1995) First experimental transmission of fatal familial insomnia. Nature 376(6539):434–435

    Article  CAS  PubMed  Google Scholar 

  23. Asante EA, Linehan JM, Smidak M, Tomlinson A, Grimshaw A, Jeelani A et al (2013) Inherited prion disease A117V is not simply a proteinopathy but produces prions transmissible to transgenic mice expressing homologous prion protein. PLoS Pathog 9(9):e1003643. doi:10.1371/journal.ppat.1003643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pirisinu L, Di Bari MA, D’Agostino C, Marcon S, Riccardi G, Poleggi A et al (2016) Gerstmann-Sträussler-Scheinker disease subtypes efficiently transmit in bank voles as genuine prion diseases. Sci Rep 6:20443. doi:10.1038/srep20443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Piccardo P, Manson JC, King D, Ghetti B, Barron RM (2007) Accumulation of prion protein in the brain that is not associated with transmissible disease. Proc Natl Acad Sci U S A 104(11):4712–4717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sandberg MK, Al-Doujaily H, Sharps B, Clarke AR, Collinge J (2011) Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 470(7335):540–542. doi:10.1038/nature09768

    Article  CAS  PubMed  Google Scholar 

  27. Laszlo L, Lowe J, Self T, Kenward N, Landon M, McBride T et al (1992) Lysosomes as key organelles in the pathogenesis of prion encephalopathies. J Pathol 166(4):333–341

    Article  CAS  PubMed  Google Scholar 

  28. Kovács GG, Gelpi E, Ströbel T, Ricken G, Nyengaard JR, Bernheimer H et al (2007) Involvement of the endosomal-lysosomal system correlates with regional pathology in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 66(7):628–636

    Article  PubMed  Google Scholar 

  29. Majumder P, Chakrabarti O (2015) Mahogunin regulates fusion between amphisomes/MVBs and lysosomes via ubiquitination of TSG101. Cell Death Dis 6:e1970. doi:10.1038/cddis.2015.257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mays CE, Soto C (2016) The stress of prion disease. Brain Res 1648(Pt B):553–560. doi:10.1016/j.brainres.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  31. Lawson VA, Collins SJ, Masters CL, Hill AF (2005) Prion protein glycosylation. J Neurochem 93(4):793–801

    Article  CAS  PubMed  Google Scholar 

  32. Lewis V, Hooper NM (2011) The role of lipid rafts in prion protein biology. Front Biosci 16:151–168

    Article  CAS  Google Scholar 

  33. Taylor DR, Hooper NM (2006) The prion protein and lipid rafts. Mol Membr Biol 23(1):89–99

    Article  CAS  PubMed  Google Scholar 

  34. Campana V, Sarnataro D, Zurzolo C (2005) The highways and byways of prion protein trafficking. Trends Cell Biol 15(2):102–111

    Article  CAS  PubMed  Google Scholar 

  35. Kim SJ, Rahbar R, Hegde RS (2001) Combinatorial control of prion protein biogenesis by the signal sequence and transmembrane domain. J Biol Chem 276(28):26132–26140

    Article  CAS  PubMed  Google Scholar 

  36. Stewart RS, Harris DA (2001) Most pathogenic mutations do not alter the membrane topology of the prion protein. J Biol Chem 276(3):2212–2220

    Article  CAS  PubMed  Google Scholar 

  37. Chakrabarti O, Ashok A, Hegde RS (2009) Prion protein biosynthesis and its emerging role in neurodegeneration. Trends Biochem Sci 34(6):287–295. doi:10.1016/j.tibs.2009.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rane NS, Chakrabarti O, Feigenbaum L, Hegde RS (2010) Signal sequence insufficiency contributes to neurodegeneration caused by transmembrane prion protein. J Cell Biol 188(4):515–526. doi:10.1083/jcb.200911115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma J, Lindquist S (2001) Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc Natl Acad Sci U S A 98(26):14955–14960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Drisaldi B, Stewart RS, Adles C, Stewart LR, Quaglio E, Biasini E et al (2003) Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J Biol Chem 278(24):21732–21743

    Article  CAS  PubMed  Google Scholar 

  41. Rane NS, Yonkovich JL, Hegde RS (2004) Protection from cytosolic prion protein toxicity by modulation of protein translocation. EMBO J 23(23):4550–4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zanusso G, Petersen RB, Jin T, Jing Y, Kanoush R, Ferrari S et al (1999) Proteasomal degradation and N-terminal protease resistance of the codon 145 mutant prion protein. J Biol Chem 274(33):23396–23404

    Article  CAS  PubMed  Google Scholar 

  43. Heske J, Heller U, Winklhofer KF, Tatzelt J (2004) The C-terminal globular domain of the prion protein is necessary and sufficient for import into the endoplasmic reticulum. The J Biol Chem 279(7):5435–5443

    Article  CAS  PubMed  Google Scholar 

  44. Yedidia Y, Horonchik L, Tzaban S, Yanai A, Taraboulos A (2001) Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein. EMBO J 20(19):5383–5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim SJ, Hegde RS (2002) Cotranslational partitioning of nascent prion protein into multiple populations at the translocation channel. Mol Biol Cell 13(11):3775–3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stewart RS, Harris DA (2005) A transmembrane form of the prion protein is localized in the Golgi apparatus of neurons. J Biol Chem 280(16):15855–15864

    Article  CAS  PubMed  Google Scholar 

  47. Chakrabarti O, Hegde RS (2009) Functional depletion of mahogunin by cytosolically exposed prion protein contributes to neurodegeneration. Cell 137(6):1136–1147. doi:10.1016/j.cell.2009.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang X, Shi Q, Xu K, Gao C, Chen C, Li XL et al (2011) Familial CJD associated PrP mutants within transmembrane region induced Ctm-PrP retention in ER and triggered apoptosis by ER stress in SH-SY5Y cells. PLoS One 6(1):e14602. doi:10.1371/journal.pone.0014602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Shi Q, Dong XP (2011) (Ctm)PrP and ER stress: a neurotoxic mechanism of some special PrP mutants. Prion 5(3):123–125. doi:10.4161/pri.5.3.16327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hegde RS, Tremblay P, Groth D, DeArmond SJ, Prusiner SB, Lingappa VR (1999) Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature 402(6763):822–886

    Article  CAS  PubMed  Google Scholar 

  51. Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 5(24):519–550

    Article  Google Scholar 

  52. Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL et al (1993) Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32(8):1991–2002

    Article  CAS  PubMed  Google Scholar 

  53. Veith NM, Plattner H, Stuermer CA, Schulz-Schaeffer WJ, Bürkle A (2009) Immunolocalisation of PrPSc in scrapie-infected N2a mouse neuroblastoma cells by light and electron microscopy. Eur J Cell Biol 88(1):45–63. doi:10.1016/j.ejcb.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  54. Rouvinski A, Karniely S, Kounin M, Moussa S, Goldberg MD, Warburg G et al (2014) Live imaging of prions reveals nascent PrPSc in cell-surface, raft-associated amyloid strings and webs. J Cell Biol 204(3):423–441. doi:10.1083/jcb.201308028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Prusiner SB, McKinley MP, Bowman KA, Bolton DC, Bendheim PE, Groth DF et al (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35(2 Pt 1):349–358

    Article  CAS  PubMed  Google Scholar 

  56. Stahl N, Borchelt DR, Prusiner SB (1990) Differential release of cellular and scrapie prion proteins from cellular membranes by phosphatidylinositol-specific phospholipase C. Biochemistry 29(22):5405–5412

    Article  CAS  PubMed  Google Scholar 

  57. Scott M, Groth D, Foster D, Torchia M, Yang SL, DeArmond SJ et al (1993) Propagation of prions with artificial properties in transgenic mice expressing chimeric PrP genes. Cell 73(5):979–988

    Article  CAS  PubMed  Google Scholar 

  58. Castilla J, Saá P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121(2):195–206

    Article  CAS  PubMed  Google Scholar 

  59. Soto C (2012) Transmissible proteins: expanding the prion heresy. Cell 149(5):968–977. doi:10.1016/j.cell.2012.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Borchelt DR, Taraboulos A, Prusiner SB (1992) Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J Biol Chem 267(23):16188–16199

    CAS  PubMed  Google Scholar 

  61. Caughey B, Raymond GJ, Ernst D, Race RE (1991) N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J Virol 65(12):6597–6603

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Magalhães AC, Silva JA, Lee KS, Martins VR, Prado VF, Ferguson SS et al (2002) Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein. J Biol Chem 277(36):33311–33318

    Article  PubMed  Google Scholar 

  63. Taraboulos A, Raeber AJ, Borchelt DR, Serban D, Prusiner SB (1992) Synthesis and trafficking of prion proteins in cultured cells. Mol Biol Cell 3(8):851–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Arnold JE, Tipler C, Laszlo L, Hope J, Landon M, Mayer RJ (1995) The abnormal isoform of the prion protein accumulates in late-endosome-like organelles in scrapie-infected mouse brain. J Pathol 176(4):403–411

    Article  CAS  PubMed  Google Scholar 

  65. Béranger F, Mange A, Goud B, Lehmann S (2002) Stimulation of PrPC retrograde transport toward the endoplasmic reticulum increases accumulation of PrPSc in prion-infected cells. J Biol Chem 277(41):38972–38977

    Article  PubMed  Google Scholar 

  66. Marijanovic Z, Caputo A, Campana V, Zurzolo C (2009) Identification of an intracellular site of prion conversion. PLoS Pathog 5:e1000426. doi:10.1371/journal.ppat.1000426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Yim YI, Park BC, Yadavalli R, Zhao X, Eisenberg E, Greene LE (2015) The multivesicular body is the major internal site of prion conversion. J Cell Sci 128(7):1434–1443. doi:10.1242/jcs.165472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Goold R, Rabbanian S, Sutton L, Andre R, Arora P, Moonga J, Clarke AR et al (2011) Rapid cell-surface prion protein conversion revealed using a novel cell system. Nat Commun 2:281. doi:10.1038/ncomms1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Taraboulos A, Scott M, Semenov A, Avrahami D, Laszlo L, Prusiner SB (1995) Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol 129(1):121–132

    Article  CAS  PubMed  Google Scholar 

  70. Ashok A, Hegde RS (2008) Retrotranslocation of prion proteins from the endoplasmic reticulum by preventing GPI signal transamidation. Mol Biol Cell 19(8):3463–3476. doi:10.1091/mbc.E08-01-0087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Klionsky DJ, Codogno P, Cuervo AM, Deretic V, Elazar Z, Fueyo-Margareto J et al (2010) A comprehensive glossary of autophagy-related molecules and processes. Autophagy 6(4):438–448. doi:10.4161/auto.6.4.12244

    Article  PubMed  PubMed Central  Google Scholar 

  72. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. doi:10.1146/annurev-genet-102808-114910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12(9):814–822. doi:10.1038/ncb0910-814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075. doi:10.1038/nature06639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9(12):1004–1010. doi:10.1038/nrm2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293. doi:10.1016/j.molcel.2010.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lamb CA, Yoshimori T, Tooze SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14(12):759–774

    Article  CAS  PubMed  Google Scholar 

  78. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N et al (2013) Autophagosomes form at ER-mitochondria contact sites. Nature 495(7441):389–393. doi:10.1038/nature11910

    Article  CAS  PubMed  Google Scholar 

  79. Fader CM, Colombo MI (2009) Autophagy and multivesicular bodies: two closely related partners. Cell Death Differ 16(1):70–78. doi:10.1038/cdd.2008.168

    Article  CAS  PubMed  Google Scholar 

  80. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145

    Article  CAS  PubMed  Google Scholar 

  81. Ganley IG (2013) Autophagosome maturation and lysosomal fusion. Essays Biochem 55:65–78. doi:10.1042/bse0550065

    Article  CAS  PubMed  Google Scholar 

  82. Amaya C, Fader CM, Colombo MI (2015) Autophagy and proteins involved in vesicular trafficking. FEBS Lett 589(22):3343–3353. doi:10.1016/j.febslet.2015.09.021

    Article  CAS  PubMed  Google Scholar 

  83. Rusten TE, Stenmark H (2009) How do ESCRT proteins control autophagy? J. Cell Sci 122(13):2179–2183

    Article  CAS  Google Scholar 

  84. Metcalf D, Isaacs AM (2010) The role of ESCRT proteins in fusion events involving lysosomes, endosomes and autophagosomes. Biochem Soc Trans 38(6):1469–1473. doi:10.1042/BST0381469

    Article  CAS  PubMed  Google Scholar 

  85. Manil-Segalén M, Lefebvre C, Culetto E, Legouis R (2012) Need an ESCRT for autophagosomal maturation? Commun Integr Biol 5(6):566–571. doi:10.4161/cib.21522

    Article  PubMed  PubMed Central  Google Scholar 

  86. Majumder P, Chakrabarti O (2016) ESCRTs and associated proteins in lysosomal fusion with endosomes and autophagosomes. Biochem Cell Biol 94(5):443–450. doi:10.1139/bcb-2016-0099

    Article  CAS  Google Scholar 

  87. Hanson PI, Shim S, Merrill SA (2009) Cell biology of the ESCRT machinery. Curr Opin Cell Biol 21(4):568–574. doi:10.1016/j.ceb.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  88. Hurley JH (2015) ESCRTs are everywhere. EMBO J 34(19):2398–2407. doi:10.15252/embj.201592484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tamai K, Tanaka N, Nara A, Yamamoto A, Nakagawa I, Yoshimori T et al (2007) Role of Hrs in maturation of autophagosomes in mammalian cells. Biochem Biophys Res Commun 360(4):721–727

    Article  CAS  PubMed  Google Scholar 

  90. Tamai K, Toyoshima M, Tanaka N, Yamamoto N, Owada Y, Kiyonari H et al (2008) Loss of Hrs in the central nervous system causes accumulation of ubiquitinated proteins and neurodegeneration. Am J Pathol 173(6):1806–1817. doi:10.2353/ajpath.2008.080684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerød L, Fisher EM et al (2007) Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol 179(3):485–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rusten TE, Vaccari T, Lindmo K, Rodahl LMW, Nezis IP, Sem-Jacobsen C et al (2007) ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol 17:1817–1825

    Article  CAS  PubMed  Google Scholar 

  93. Lee JA, Beigneux A, Ahmad ST, Young SG, Gao FB (2007) ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol 17(18):1561–1567

    Article  CAS  PubMed  Google Scholar 

  94. Sagona AP, Nezis IP, Stenmark H (2014) Association of CHMP4B and autophagy with micronuclei: implications for cataract formation. Biomed Res Int 2014:974393. doi:10.1155/2014/974393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Vilette D, Laulagnier K, Huor A, Alais S, Simoes S, Maryse R et al (2015) Efficient inhibition of infectious prions multiplication and release by targeting the exosomal pathway. Cell Mol Life Sci 72(22):4409–4427. doi:10.1007/s00018-015-1945-8

    Article  CAS  PubMed  Google Scholar 

  96. Anelli T, Sitia R (2008) Protein quality control in the early secretory pathway. EMBO J 27(2):315–327. doi:10.1038/sj.emboj.7601974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nat Cell Biol 7(8):766–772

    Article  CAS  PubMed  Google Scholar 

  98. Hegde RS, Ploegh HL (2010) Quality and quantity control at the endoplasmic reticulum. Curr Opin Cell Biol 22(4):437–446. doi:10.1016/j.ceb.2010.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Neuendorf E, Weber A, Saalmueller A, Schatzl H, Reifenberg K, Pfaff E et al (2004) Glycosylation deficiency at either one of the two glycan attachment sites of cellular prion protein preserves susceptibility to bovine spongiform encephalopathy and scrapie infections. J Biol Chem 279(51):53306–53316

    Article  CAS  PubMed  Google Scholar 

  100. Cancellotti E, Wiseman F, Tuzi NL, Baybutt H, Monaghan P, Aitchison L, Simpson J et al (2005) Altered glycosylated PrP proteins can have different neuronal trafficking in brain but do not acquire scrapie-like properties. J Biol Chem 280(52):42909–42918

    Article  CAS  PubMed  Google Scholar 

  101. Campana V, Caputo A, Sarnataro D, Paladino S, Tivodar S, Zurzolo C (2007) Characterization of the properties and trafficking of an anchorless form of the prion protein. J Biol Chem 282(31):22747–22756

    Article  CAS  PubMed  Google Scholar 

  102. Yanai A, Meiner Z, Gahali I, Gabizon R, Taraboulos A (1999) Subcellular trafficking abnormalities of a prion protein with a disrupted disulfide loop. FEBS Lett 460(1):11–16

    Article  CAS  PubMed  Google Scholar 

  103. Muramoto T, Scott M, Cohen FE, Prusiner SB (1996) Recombinant scrapie-like prion protein of 106 amino acids is soluble. Proc Natl Acad Sci U S A 93(26):15457–15462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shmerling D, Hegyi I, Fischer M, Blättler T, Brandner S, Götz J et al (1998) Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93(2):203–214

    Article  CAS  PubMed  Google Scholar 

  105. Supattapone S, Bouzamondo E, Ball HL, Wille H, Nguyen HO, Cohen FE et al (2001) A protease-resistant 61-residue prion peptide causes neurodegeneration in transgenic mice. Mol Cell Biol 21(7):2608–2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Baumann F, Tolnay M, Brabeck C, Pahnke J, Kloz U, Niemann HH et al (2007) Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO J 26(2):538–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li A, Christensen HM, Stewart LR, Roth KA, Chiesa R, Harris DA (2007) Neonatal lethality in transgenic mice expressing prion protein with a deletion of residues 105-125. EMBO J 26(2):548–558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Jin T, Gu Y, Zanusso G, Sy M, Kumar A, Cohen M et al (2000) The chaperone protein BiP binds to a mutant prion protein and mediates its degradation by the proteasome. J Biol Chem 275(49):38699–38704

    Article  CAS  PubMed  Google Scholar 

  109. Kang SW, Rane NS, Kim SJ, Garrison JL, Taunton J, Hegde RS (2006) Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway. Cell 127(5):999–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shao J, Choe V, Cheng H, Tsai YC, Weissman AM, Luo S et al (2014) Ubiquitin ligase gp78 targets unglycosylated prion protein PrP for ubiquitylation and degradation. PLoS One 9(4):e92290. doi:10.1371/journal.pone.0092290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Peters SL, Déry MA, LeBlanc AC (2016) Familial prion protein mutants inhibit Hrd1-mediated retrotranslocation of misfolded proteins by depleting misfolded protein sensor BiP. Hum Mol Genet 25(5):976–988. doi:10.1093/hmg/ddv630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kenward N, Hope J, Landon M, Mayer RJ (1994) Expression of polyubiquitin and heat-shock protein 70 genes increases in the later stages of disease progression in scrapie-infected mouse brain. J Neurochem 62(5):1870–1877

    Article  CAS  PubMed  Google Scholar 

  113. Lowe J, Fergusson J, Kenward N, Laszlo L, Landon M, Farquhar C et al (1992) Immunoreactivity to ubiquitin protein conjugates is present early in the disease process in the brains of scrapie-infected mice. J Pathol 168(2):169–177

    Article  CAS  PubMed  Google Scholar 

  114. Kristiansen M, Deriziotis P, Dimcheff DE, Jackson GS, Ovaa H, Naumann H et al (2007) Disease-associated prion protein oligomers inhibit the 26S proteasome. Mol Cell 26(2):175–188

    Article  CAS  PubMed  Google Scholar 

  115. Deriziotis P, André R, Smith DM, Goold R, Kinghorn KJ, Kristiansen M et al (2011) Misfolded PrP impairs the UPS by interaction with the 20S proteasome and inhibition of substrate entry. EMBO J 30(15):3065–3077. doi:10.1038/emboj.2011.224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. McKinnon C, Goold R, Andre R, Devoy A, Ortega Z, Moonga J et al (2016) Prion-mediated neurodegeneration is associated with early impairment of the ubiquitin-proteasome system. Acta Neuropathol 131(3):411–425. doi:10.1007/s00401-015-1508-y

    Article  CAS  PubMed  Google Scholar 

  117. Andre R, Tabrizi SJ (2012) Misfolded PrP and a novel mechanism of proteasome inhibition. Prion 6(1):32–36. doi:10.4161/pri.6.1.18272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ma J, Wollmann R, Lindquist S (2002) Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298(5599):1781–1785

    Article  CAS  PubMed  Google Scholar 

  119. Deriziotis P, Tabrizi SJ (2008) Prions and the proteasome. Biochim Biophys Acta 1782(12):713–722. doi:10.1016/j.bbadis.2008.06.011

    Article  CAS  PubMed  Google Scholar 

  120. Saá P, Harris DA, Cervenakova L (2016) Mechanisms of prion-induced neurodegeneration. Expert Rev Mol Med 18:e5. doi:10.1017/erm.2016.8

    Article  PubMed  Google Scholar 

  121. Ashok A, Hegde RS (2009) Selective processing and metabolism of disease-causing mutant prion proteins. PLoS Pathog 5(6):e1000479. doi:10.1371/journal.ppat.1000479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Satpute-Krishnan P, Ajinkya M, Bhat S, Itakura E, Hegde RS, Lippincott-Schwartz J (2014) ER stress-induced clearance of misfolded GPI-anchored proteins via the secretory pathway. Cell 158(3):522–533. doi:10.1016/j.cell.2014.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Goold R, McKinnon C, Rabbanian S, Collinge J, Schiavo G, Tabrizi SJ (2013) Alternative fates of newly formed PrPSc upon prion conversion on the plasma membrane. J Cell Sci 126(16):3552–3562. doi:10.1242/jcs.120477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ermolayev V, Cathomen T, Merk J, Friedrich M, Härtig W, Harms GS et al (2009) Impaired axonal transport in motor neurons correlates with clinical prion disease. PLoS Pathog 5(8):e1000558. doi:10.1371/journal.ppat.1000558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Massignan T, Biasini E, Lauranzano E, Veglianese P, Pignataro M, Fioriti L et al (2010) Mutant prion protein expression is associated with an alteration of the Rab GDP dissociation inhibitor α (GDI)/Rab11 pathway. Mol Cell Proteomics 9(4):611–622. doi:10.1074/mcp.M900271-MCP200

    Article  CAS  PubMed  Google Scholar 

  126. Shim SY, Karri S, Law S, Schatzl HM, Gilch S (2016) Prion infection impairs lysosomal degradation capacity by interfering with rab7 membrane attachment in neuronal cells. Sci Rep 6:21658. doi:10.1038/srep21658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sikorska B, Liberski PP, Giraud P, Kopp N, Brown P (2004) Autophagy is a part of ultrastructural synaptic pathology in Creutzfeldt-Jakob disease: a brain biopsy study. Int J Biochem Cell Biol 36(12):2563–2573

    Article  CAS  PubMed  Google Scholar 

  128. Cai Y, Arikkath J, Yang L, Guo ML, Periyasamy P, Buch S (2016) Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy 12(2):225–244. doi:10.1080/15548627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Schätzl HM, Laszlo L, Holtzman DM, Tatzelt J, DeArmond SJ, Weiner RI et al (1997) A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J Virol 71(11):8821–8831

    PubMed  PubMed Central  Google Scholar 

  130. Dron M, Bailly Y, Beringue V, Haeberlé AM, Griffond B, Risold PY et al (2006) SCRG1, a potential marker of autophagy in transmissible spongiform encephalopathies. Autophagy 2(1):58–60

    Article  CAS  PubMed  Google Scholar 

  131. Liberski PP, Sikorska B, Bratosiewicz-Wasik J, Gajdusek DC, Brown P (2004) Neuronal cell death in transmissible spongiform encephalopathies (prion diseases) revisited: from apoptosis to autophagy. Int J Biochem Cell Biol 36(12):2473–2490

    Article  CAS  PubMed  Google Scholar 

  132. Oh JM, Shin HY, Park SJ, Kim BH, Choi JK, Choi EK et al (2008) The involvement of cellular prion protein in the autophagy pathway in neuronal cells. Mol Cell Neurosci 39(2):238–247. doi:10.1016/j.mcn.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  133. Xu Y, Tian C, Wang SB, Xie WL, Guo Y, Zhang J et al (2012) Activation of the macroautophagic system in scrapie-infected experimental animals and human genetic prion diseases. Autophagy 8(11):1604–1620. doi:10.4161/auto.21482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Homma T, Ishibashi D, Nakagaki T, Satoh K, Sano K, Atarashi R, Nishida N (2014) Increased expression of p62/SQSTM1 in prion diseases and its association with pathogenic prion protein. Sci Rep 4:4504. doi:10.1038/srep04504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Shin HY, Park JH, Carp RI, Choi EK, Kim YS (2014) Deficiency of prion protein induces impaired autophagic flux in neurons. Front Aging Neurosci 6:207. doi:10.3389/fnagi.2014.00207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Aguib Y, Heiseke A, Gilch S, Riemer C, Baier M, Schätzl HM, Ertmer A (2009) Autophagy induction by trehalose counter-acts cellular prion-infection. Autophagy 5(3):361–369

    Article  CAS  PubMed  Google Scholar 

  137. Heiseke A, Aguib Y, Riemer C, Baier M, Schätzl HM (2009) Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy. J Neurochem 109(1):25–34. doi:10.1111/j.1471-4159.2009.05906.x

    Article  CAS  PubMed  Google Scholar 

  138. Heiseke A, Aguib Y, Schatzl HM (2010) Autophagy, prion infection and their mutual interactions. Curr Issues Mol Biol 12(2):87–97

    CAS  PubMed  Google Scholar 

  139. Ertmer A, Gilch S, Yun SW, Flechsig E, Klebl B, Stein-Gerlach M et al (2004) The tyrosine kinase inhibitor STI571 induces cellular clearance of PrPSc in prion-infected cells. J Biol Chem 279(40):41918–41927

    Article  CAS  PubMed  Google Scholar 

  140. Yun SW, Ertmer A, Flechsig E, Gilch S, Riederer P, Gerlach M et al (2007) The tyrosine kinase inhibitor imatinib mesylate delays prion neuroinvasion by inhibiting prion propagation in the periphery. J Neuro-Oncol 13(4):328–337

    CAS  Google Scholar 

  141. Fan XY, Tian C, Wang H, Xu Y, Ren K, Zhang BY et al (2015) Activation of the AMPK-ULK1 pathway plays an important role in autophagy during prion infection. Sci Rep 5:14728. doi:10.1038/srep14728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhu T, Zhao D, Song Z, Yuan Z, Li C, Wang Y et al (2016) HDAC6 alleviates prion peptide-mediated neuronal death via modulating PI3K-Akt-mTOR pathway. Neurobiol Aging 37:91–102. doi:10.1016/j.neurobiolaging.2015.09.021

    Article  PubMed  CAS  Google Scholar 

  143. Jeong JK, Moon MH, Lee YJ, Seol JW, Park SY (2012) Melatonin-induced autophagy protects against human prion protein-mediated neurotoxicity. J Pineal Res 53(2):138–146. doi:10.1111/j.1600-079X.2012.00980.x

    Article  CAS  PubMed  Google Scholar 

  144. Jeong JK, Park SY (2015) Neuroprotective effect of cellular prion protein (PrPC) is related with activation of alpha7 nicotinic acetylcholine receptor (α7nAchR)-mediated autophagy flux. Oncotarget 6(28):24660–24674. doi:10.18632/oncotarget.4953

    Article  PubMed  PubMed Central  Google Scholar 

  145. Moon JH, Lee JH, Nazim UM, Lee YJ, Seol JW, Eo SK et al (2016) Human prion protein induced autophagy flux governs neuron cell damage in primary neuron cells. Oncotarget 7(21):29989–30002. doi:10.18632/oncotarget.8802

    PubMed  PubMed Central  Google Scholar 

  146. Grasbon-Frodl E, Lorenz H, Mann U, Nitsch RM, Windl O, Kretzschmar HA (2004) Loss of glycosylation associated with the T183A mutation in human prion disease. Acta Neuropathol 108(6):476–484

    Article  CAS  PubMed  Google Scholar 

  147. Cortes CJ, Qin K, Norstrom EM, Green WN, Bindokas VP, Mastrianni JA (2013) Early delivery of misfolded PrP from ER to lysosomes by autophagy. Int J Cell Biol 2013:560421. doi:10.1155/2013/560421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Cortes CJ, Qin K, Cook J, Solanki A, Mastrianni JA (2012) Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann–Straussler–Scheinker disease. J Neurosci 32(36):12396–12405. doi:10.1523/JNEUROSCI.6189-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Xu Y, Zhang J, Tian C, Ren K, Yan YE, Wang K et al (2014) Overexpression of p62/SQSTM1 promotes the degradations of abnormally accumulated PrP mutants in cytoplasm and relieves the associated cytotoxicities via autophagy-lysosome-dependent way. Med Microbiol Immunol 203(2):73–84. doi:10.1007/s00430-013-0316-z

    Article  CAS  PubMed  Google Scholar 

  150. Walker WP, Oehler A, Edinger AL, Wagner KU, Gunn TM (2016) Oligodendroglial deletion of ESCRT-I component TSG101 causes spongiform encephalopathy. Biol Cell 108(11):324–337. doi:10.1111/boc.201600014

    Article  CAS  PubMed  Google Scholar 

  151. Kanu N, Imokawa Y, Drechsel DN, Williamson RA, Birkett CR, Bostock CJ et al (2002) Transfer of scrapie prion infectivity by cell contact in culture. Curr Biol 12(7):523–530

    Article  CAS  PubMed  Google Scholar 

  152. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT et al (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11(3):328–336. doi:10.1038/ncb1841

    Article  CAS  PubMed  Google Scholar 

  153. Leblanc P, Arellano-Anaya ZE, Bernard E, Gallay L, Provansal M, Lehmann S et al (2017) Isolation of exosomes and microvesicles from cell culture systems to study prion transmission. Methods Mol Biol 1545:153–176

    Article  PubMed  Google Scholar 

  154. Guo BB, Bellingham SA, Hill AF (2016) Stimulating the release of exosomes increases the intercellular transfer of prions. J Biol Chem 291(10):5128–5137. doi:10.1074/jbc.M115.684258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Alais S, Simoes S, Baas D, Lehmann S, Raposo G, Darlix JL, Leblanc P (2008) Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol Cell 100(10):603–615. doi:10.1042/BC20080025

    Article  CAS  PubMed  Google Scholar 

  156. Vella LJ, Hill AF (2008) Generation of cell lines propagating infectious prions and the isolation and characterization of cell-derived exosomes. Methods Mol Biol 459:69–82. doi:10.1007/978-1-59745-234-2_5

    Article  CAS  PubMed  Google Scholar 

  157. Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M et al (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci U S A 101(26):9683–9688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Vella LJ, Sharples RA, Lawson VA, Masters CL, Cappai R, Hill AF (2007) Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 211(5):582–590

    Article  CAS  PubMed  Google Scholar 

  159. Vella LJ, Greenwood DL, Cappai R, Scheerlinck JP, Hill AF (2008) Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Vet Immunol Immunopathol 124(3–4):385–393. doi:10.1016/j.vetimm.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  160. Jeffrey M, McGovern G, Goodsir CM, Brown KL, Bruce ME (2000) Sites of prion protein accumulation in scrapie-infected mouse spleen revealed by immuno-electron microscopy. J Pathol 191(3):323–332

    Article  CAS  PubMed  Google Scholar 

  161. Baixauli F, Lopez-otın C, Mittelbrunn M (2014) Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol 5:403. doi:10.3389/fimmu.2014.00403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Dias MV, Teixeira BL, Rodrigues BR, Sinigaglia-Coimbra R, Porto-Carreiro I, Roffé M et al (2016) PRNP/prion protein regulates the secretion of exosomes modulating CAV1/caveolin-1-suppressed autophagy. Autophagy 12(11):2113–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nakagaki T, Satoh K, Ishibashi D, Fuse T, Sano K, Kamatari YO et al (2013) FK506 reduces abnormal prion protein through the activation of autolysosomal degradation and prolongs survival in prion-infected mice. Autophagy 9(9):1386–1394. doi:10.4161/auto.25381

    Article  CAS  PubMed  Google Scholar 

  164. Bajsarowicz K, Ahn M, Ackerman L, Dearmond BN, Carlson G, DeArmond SJ (2012) A brain aggregate model gives new insights into the pathobiology and treatment of prion diseases. J Neuropathol Exp Neurol 71(5):449–466. doi:10.1097/NEN.0b013e3182544680

    Article  CAS  PubMed  Google Scholar 

  165. Marzo L, Marijanovic Z, Browman D, Chamoun Z, Caputo A, Zurzolo C (2013) 4-Hydroxytamoxifen leads to PrPSc clearance by conveying both PrPC and PrPSc to lysosomes independently of autophagy. J Cell Sci 126(Pt 6):1345–1354. doi:10.1242/jcs.114801

    Article  CAS  PubMed  Google Scholar 

  166. Browman D, Zurzolo C (2013) Not on the menu autophagy-independent clearance of prions. Prion 7(4):286–290. doi:10.4161/pri.25809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Integrative Biology on Omics Platform Project”, intramural funding of the Department of Atomic Energy (DAE), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oishee Chakrabarti.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, P., Chakrabarti, O. Lysosomal Quality Control in Prion Diseases. Mol Neurobiol 55, 2631–2644 (2018). https://doi.org/10.1007/s12035-017-0512-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0512-8

Keywords

Navigation