Skip to main content
Log in

Modulation of ARTS and XIAP by Parkin Is Associated with Carnosic Acid Protects SH-SY5Y Cells against 6-Hydroxydopamine-Induced Apoptosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The mediation of apoptosis-related protein in the TGF-β signaling pathway (ARTS) and X-liked inhibitor of apoptosis protein (XIAP) by parkin plays a critical role in preventing Parkinson’s disease. We studied whether carnosic acid (CA) could prevent 6-hydroxydopamine (6-OHDA)-induced apoptosis by modulating ARTS and XIAP through parkin in SH-SY5Y cells. In cells treated with 6-OHDA, the protein expression of ARTS is increased and XIAP is decreased. Pretreatment of cells with CA reversed these effects. Moreover, CA attenuated the activation of caspase 9 and caspase 7 by 6-OHDA. By immunoprecipitation with ARTS antibody, we found that 6-OHDA increased the protein expression of XIAP. However, pretreatment of cells with CA reduced XIAP protein and increased the ubiquitination of ARTS. Silencing of parkin attenuated the ability of CA to reverse the induction of ARTS and apoptotic-related proteins and the reduction of XIAP and parkin protein by 6-OHDA. Similarly, reversal of 6-OHDA-induced nuclear condensation and apoptotic-related proteins by CA was inhibited in cells with XIAP silencing. In conclusion, CA induces parkin by enhancing the ubiquitination of ARTS, leading to induction of XIAP. This may be a novel strategy for preventing Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ARTS:

Apoptosis-related protein in the TGF-β signaling pathway

BIR:

Baculoviral IAP repeat

CA:

Carnosic acid

DMSO:

Dimethyl sulfoxide

IAP:

Inhibitor of apoptosis family of proteins

6-OHDA:

6-Hydroxydopamine

MPTP:

Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PARP:

Poly-ADP ribose polymerase

PD:

Parkinson’s disease

siRNA:

Small-interfering RNA

UPS:

Ubiquitin-proteasome system

XIAP:

X-liked inhibitor of apoptosis protein.

References

  1. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535. doi:10.1016/S1474-4422(06)70471-9

    Article  PubMed  Google Scholar 

  2. Shulman JM, De Jager PL, Feany MB (2011) Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol 6:193–222. doi:10.1146/annurev-pathol-011110-130242

    Article  CAS  PubMed  Google Scholar 

  3. Hu LW, Yen JH, Shen YT, Wu KY, Wu MJ (2014) Luteolin modulates 6-hydroxydopamine-induced transcriptional changes of stress response pathways in PC12 cells. PLoS One 9:e97880. doi:10.1371/journal.pone.0097880

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu H, Mao P, Wang J, Wang T, Xie CH (2015) Allicin protects PC12 cells against 6-OHDA-induced oxidative stress and mitochondrial dysfunction via regulating mitochondrial dynamics. Cell Physiol Biochem 36:966–979. doi:10.1159/000430271

    Article  CAS  PubMed  Google Scholar 

  5. Liu B, Traini R, Killinger B, Schneider B, Moszczynska A (2013) Overexpression of parkin in the rat nigrostriatal dopamine system protects against methamphetamine neurotoxicity. Exp Neurol 247:359–372. doi:10.1016/j.expneurol.2013.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin CY, Tsai CW (2016) Carnosic acid protects SH-SY5Y cells against 6-hydroxydopamine-induced cell death through upregulation of parkin pathway. Neuropharmacology 110:109–117. doi:10.1016/j.neuropharm.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  7. Kazlauskaite A, Muqit MM (2015) PINK1 and parkin—mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease. FEBS J 282:215–223. doi:10.1111/febs.13127

    Article  CAS  PubMed  Google Scholar 

  8. Charan RA, LaVoie MJ (2015) Pathologic and therapeutic implications for the cell biology of parkin. Mol Cell Neurosci 66:62–71. doi:10.1016/j.mcn.2015.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koch A, Lehmann-Horn K, Dachsel JC, Gasser T, Kahle PJ, Lucking CB (2009) Proteasomal inhibition reduces parkin mRNA in PC12 and SH-SY5Y cells. Parkinsonism Relat Disord 15:220–225

    Article  PubMed  Google Scholar 

  10. Um JW, Im E, Lee HJ, Min B, Yoo L, Yoo J, Lubbert H, Stichel-Gunkel C et al (2010) Parkin directly modulates 26S proteasome activity. J Neurosci 30:11805–11814. doi:10.1523/JNEUROSCI.2862-09.2010

    Article  CAS  PubMed  Google Scholar 

  11. Wang C, Ko HS, Thomas B, Tsang F, Chew KC, Tay SP, Ho MW, Lim TM et al (2005) Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin’s protective function. Hum Mol Genet 14:3885–3897

    Article  CAS  PubMed  Google Scholar 

  12. Higashi Y, Asanuma M, Miyazaki I, Hattori N, Mizuno Y, Ogawa N (2004) Parkin attenuates manganese-induced dopaminergic cell death. J Neurochem 89(6):1490–1497

    Article  CAS  PubMed  Google Scholar 

  13. Srinivasula SM, Ashwell JD (2008) IAPs: what’s in a name? Mol Cell 30:123–135. doi:10.1016/j.molcel.2008.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen GS, Reed JC (1998) A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem 273:7787–7790

    Article  CAS  PubMed  Google Scholar 

  15. Galban S, Duckett CS (2010) XIAP as a ubiquitin ligase in cellular signaling. Cell Death Differ 17(1):54–60. doi:10.1038/cdd.2009.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES, Shi Y (2001) Structural basis of caspase-7 inhibition by XIAP. Cell 104(5):769–780

    Article  CAS  PubMed  Google Scholar 

  17. Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, Liddington RC, Salvesen GS (2001) Structural basis for the inhibition of caspase-3 by XIAP. Cell 104(5):791–800

    Article  CAS  PubMed  Google Scholar 

  18. Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, Alnemri ES, Fairman R et al (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11:519–527

    Article  CAS  PubMed  Google Scholar 

  19. Paulsen M, Ussat S, Jakob M, Scherer G, Lepenies I, Schutze S, Kabelitz D, Adam-Klages S (2008) Interaction with XIAP prevents full caspase-3/-7 activation in proliferating human T lymphocytes. Eur J Immunol 38:1979–1987. doi:10.1002/eji.200838211

    Article  CAS  PubMed  Google Scholar 

  20. Bornstein B, Gottfried Y, Edison N, Shekhtman A, Lev T, Glaser F, Larisch S (2011) ARTS binds to a distinct domain in XIAP-BIR3 and promotes apoptosis by a mechanism that is different from other IAP-antagonists. Apoptosis 16:869–881. doi:10.1007/s10495-011-0622-0

    Article  CAS  PubMed  Google Scholar 

  21. Gottfried Y, Rotem A, Lotan R, Steller H, Larisch S (2004) The mitochondrial ARTS protein promotes apoptosis through targeting XIAP. EMBO J 23:1627–1635. doi:10.1038/sj.emboj.7600155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kemeny S, Dery D, Loboda Y, Rovner M, Lev T, Zuri D, Finberg JP, Larisch S (2012) Parkin promotes degradation of the mitochondrial pro-apoptotic ARTS protein. PLoS One 7:e38837. doi:10.1371/journal.pone.0038837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu Y, Zhang N, Fan Q, Lin M, Zhang C, Fan G, Zhai X, Zhang F et al (2015) Protective efficacy of carnosic acid against hydrogen peroxide induced oxidative injury in HepG2 cells through the SIRT1 pathway. Can J Physiol Pharmacol 93:625–631. doi:10.1139/cjpp-2014-0513

    Article  CAS  PubMed  Google Scholar 

  24. Park JA, Kim S, Lee SY, Kim CS, Kim DK, Kim SJ, Chun HS (2008) Beneficial effects of carnosic acid on dieldrin-induced dopaminergic neuronal cell death. Neuroreport 19:1301–1304. doi:10.1097/WNR.0b013e32830abc1f

    Article  CAS  PubMed  Google Scholar 

  25. Tsai CW, Liu KL, Lin YR, Kuo WC (2014) The mechanisms of carnosic acid attenuates tumor necrosis factor-alpha-mediated inflammation and insulin resistance in 3 T3-L1 adipocytes. Mol Nutr Food Res 58:654–664. doi:10.1002/mnfr.201300356

    Article  CAS  PubMed  Google Scholar 

  26. Zhang D, Lee B, Nutter A, Song P, Dolatabadi N, Parker J, Sanz-Blasco S, Newmeyer T et al (2015) Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid. J Neurochem 133:898–908. doi:10.1111/jnc.13074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barni MV, Carlini MJ, Cafferata EG, Puricelli L, Moreno S (2012) Carnosic acid inhibits the proliferation and migration capacity of human colorectal cancer cells. Oncol Rep 27:1041–1048. doi:10.3892/or.2012.1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen JH, Ou HP, Lin CY, Lin FJ, Wu CR, Chang SW, Tsai CW (2012) Carnosic acid prevents 6-hydroxydopamine-induced cell death in SH-SY5Y cells via mediation of glutathione synthesis. Chem Res Toxicol 25:1893–1901. doi:10.1021/tx300171u

    Article  CAS  PubMed  Google Scholar 

  29. Wu CR, Tsai CW, Chang SW, Lin CY, Huang LC, Tsai CW (2015) Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease: involvement of antioxidative enzymes induction. Chem Biol Interact 225:40–46. doi:10.1016/j.cbi.2014.11.011

    Article  CAS  PubMed  Google Scholar 

  30. Lin CY, Chen JH, Fu RH, Tsai CW (2014) Induction of Pi form of glutathione S-transferase by carnosic acid is mediated through PI3K/Akt/NF-kappaB pathway and protects against neurotoxicity. Chem Res Toxicol 27:1958–1966. doi:10.1021/tx5003063

    Article  CAS  PubMed  Google Scholar 

  31. Lin CY, Tsai CW (2016) Carnosic acid attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells by inducing autophagy through an enhanced interaction of parkin and Beclin1. Mol Neurobiol. doi:10.1007/s12035-016-9873-7

    Google Scholar 

  32. Wilhelmus MM, Nijland PG, Drukarch B, de Vries HE, van Horssen J (2012) Involvement and interplay of parkin, PINK1, and DJ1 in neurodegenerative and neuroinflammatory disorders. Free Radic Biol Med 53:983–992. doi:10.1016/j.freeradbiomed.2012.05.040

    Article  CAS  PubMed  Google Scholar 

  33. Ono K, Ikeda T, Takasaki J, Yamada M (2011) Familial Parkinson disease mutations influence alpha-synuclein assembly. Neurobiol Dis 43:715–724. doi:10.1016/j.nbd.2011.05.025

    Article  CAS  PubMed  Google Scholar 

  34. Iaccarino C, Crosio C, Vitale C, Sanna G, Carri MT, Barone P (2007) Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum Mol Genet 16:1319–1326

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Petrie TG, Liu Y, Liu J, Fujioka H, Zhu X (2012) Parkinson's disease-associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction. J Neurochem 121:830–839. doi:10.1111/j.1471-4159.2012.07734.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qu W, Fan L, Kim YC, Ishikawa S, Iguchi-Ariga SM, Pu XP, Ariga H (2009) Kaempferol derivatives prevent oxidative stress-induced cell death in a DJ-1-dependent manner. J Pharmacol Sci 110:191–200

    Article  CAS  PubMed  Google Scholar 

  37. Ortiz-Ortiz MA, Moran JM, Ruiz-Mesa LM, Niso-Santano M, Bravo-SanPedro JM, Gomez-Sanchez R, Gonzalez-Polo RA, Fuentes JM (2010) Curcumin exposure induces expression of the Parkinson’s disease-associated leucine-rich repeat kinase 2 (LRRK2) in rat mesencephalic cells. Neurosci Lett 468:120–124. doi:10.1016/j.neulet.2009.10.081

    Article  CAS  PubMed  Google Scholar 

  38. Romani-Aumedes J, Canal M, Martin-Flores N, Sun X, Perez-Fernandez V, Wewering S, Fernandez-Santiago R, Ezquerra M et al (2014) Parkin loss of function contributes to RTP801 elevation and neurodegeneration in Parkinson’s disease. Cell Death Dis 5:e1364. doi:10.1038/cddis.2014.333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Scarffe LA, Stevens DA, Dawson VL, Dawson TM (2014) Parkin and PINK1: much more than mitophagy. Trends Neurosci 37:315–324. doi:10.1016/j.tins.2014.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dai H, Deng Y, Zhang J, Han H, Zhao M, Li Y, Zhang C, Tian J et al (2015) PINK1/parkin-mediated mitophagy alleviates chlorpyrifos-induced apoptosis in SH-SY5Y cells. Toxicology 334:72–80. doi:10.1016/j.tox.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  41. Henn IH, Bouman L, Schlehe JS, Schlierf A, Schramm JE, Wegener E, Nakaso K, Culmsee C et al (2007) Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J Neurosci 27:1868–1878

    Article  CAS  PubMed  Google Scholar 

  42. Um JW, Park HJ, Song J, Jeon I, Lee G, Lee PH, Chung KC (2010) Formation of parkin aggregates and enhanced PINK1 accumulation during the pathogenesis of Parkinson’s disease. Biochem Biophys Res Commun 393:824–828. doi:10.1016/j.bbrc.2010.02.090

    Article  CAS  PubMed  Google Scholar 

  43. Obexer P, Ausserlechner MJ (2014) X-linked inhibitor of apoptosis protein—a critical death resistance regulator and therapeutic target for personalized cancer therapy. Front Oncol 4:197. doi:10.3389/fonc.2014.00197

    Article  PubMed  PubMed Central  Google Scholar 

  44. Eckelman BP, Salvesen GS (2006) The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J Biol Chem 281:3254–3260. doi:10.1074/jbc.M510863200

    Article  CAS  PubMed  Google Scholar 

  45. McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5(4):a008656. doi:10.1101/cshperspect.a008656

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tsang AH, Lee YI, Ko HS, Savitt JM, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM et al (2009) S-nitrosylation of XIAP compromises neuronal survival in Parkinson’s disease. Proc Natl Acad Sci U S A 106:4900–4905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saito A, Hayashi T, Okuno S, Ferrand-Drake M, Chan PH (2003) Interaction between XIAP and Smac/DIABLO in the mouse brain after transient focal cerebral ischemia. J Cereb Blood Flow Metab 23:1010–1019. doi:10.1097/01.WCB.0000080702.47016.FF

    Article  CAS  PubMed  Google Scholar 

  48. Huang Y, Rich RL, Myszka DG, Wu H (2003) Requirement of both the second and third BIR domains for the relief of X-linked inhibitor of apoptosis protein (XIAP)-mediated caspase inhibition by Smac. J Biol Chem 278:49517–49522. doi:10.1074/jbc.M310061200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology (MOST 103-2320-B-039-042-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Wen Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, RH., Huang, LC., Lin, CY. et al. Modulation of ARTS and XIAP by Parkin Is Associated with Carnosic Acid Protects SH-SY5Y Cells against 6-Hydroxydopamine-Induced Apoptosis. Mol Neurobiol 55, 1786–1794 (2018). https://doi.org/10.1007/s12035-017-0443-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0443-4

Keywords

Navigation