Skip to main content

Advertisement

Log in

Development of Therapeutics for C9ORF72 ALS/FTD-Related Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The identification of the hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in the non-coding region of the C9ORF72 gene as the most frequent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has opened the path for advances in the knowledge and treatment of these disorders, which remain incurable. Recent evidence suggests that HRE RNA can cause gain-of-function neurotoxicity, but haploinsufficiency has also been hypothesized. In this review, we describe the recent developments in therapeutic targeting of the pathological expansion of C9ORF72 for ALS, FTD, and other neurodegenerative disorders. Three approaches are prominent: (1) an antisense oligonucleotides/RNA interference strategy; (2) using small compounds to counteract the toxic effects directly exerted by RNA derived from the repeat transcription (foci), by the translation of dipeptide repeat proteins (DPRs) from the repeated sequence, or by the sequestration of RNA-binding proteins from the C9ORF72 expansion; and (3) gene therapy, not only for silencing the toxic RNA/protein, but also for rescuing haploinsufficiency caused by the reduced transcription of the C9ORF72 coding sequence or by the diminished availability of RNA-binding proteins that are sequestered by RNA foci. Finally, with the perspective of clinical therapy, we discuss the most promising progress that has been achieved to date in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bucchia M, Ramirez A, Parente V, Simone C, Nizzardo M, Magri F, Dametti S, Corti S (2015) Therapeutic development in amyotrophic lateral sclerosis. Clin Ther 37(3):668–80. doi:10.1016/j

    Article  PubMed  Google Scholar 

  2. Renton AE, Chiò A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17(1):17–23. doi:10.1038/nn.3584

    Article  CAS  PubMed  Google Scholar 

  3. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62

    Article  CAS  PubMed  Google Scholar 

  4. Marangi G, Traynor BJ (2015) Genetic causes of amyotrophic lateral sclerosis: new genetic analysis methodologies entailing new opportunities and challenges. Brain Res 1607:75–93. doi:10.1016/j.brainres.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  5. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–68. doi:10.1016/j.neuron.2011.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Souza PV, Pinto WB, Oliveira AS (2015) C9orf72-related disorders: expanding the clinical and genetic spectrum of neurodegenerative diseases. Arq Neuropsiquiatr 73(3):246–56. doi:10.1590/0004-282X20140229

    Article  PubMed  Google Scholar 

  7. Majounie E, Renton AE, Mok K, Dopper EG, Waite A et al (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11(4):323–30. doi:10.1016/S1474-4422(12)70043-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2):245–56. doi:10.1016/j.neuron.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ratti A, Corrado L, Castellotti B, Del Bo R, Fogh I et al (2012) C9ORF72 repeat expansion in a large Italian ALS cohort: evidence of a founder effect. Neurobiol Aging 33(10):2528. doi:10.1016/j.neurobiolaging.2012.06.008, e7-14

    Article  PubMed  Google Scholar 

  10. Ash PE, Bieniek KF, Gendron TF, Caulfield T, Lin WL et al (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77(4):639–46. doi:10.1016/j.neuron.2013.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mori K, Weng SM, Arzberger T, May S, Rentzsch K et al (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339(6125):1335–8. doi:10.1126/science.1232927

    Article  CAS  PubMed  Google Scholar 

  12. Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P et al (2014) Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345(6201):1139–45. doi:10.1126/science.1254917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mizielinska S, Grönke S, Niccoli T, Ridler CE, Clayton EL et al (2014) C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 345(6201):1192–4. doi:10.1126/science.1256800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ciura S, Lattante S, Le Ber I, Latouche M, Tostivint H, Brice A, Kabashi E (2013) Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann Neuro 74(2):180–7. doi:10.1002/ana.23946

    CAS  Google Scholar 

  15. Gijselinck I, Van Mossevelde S, van der Zee J, Sieben A, Engelborghs S, et al (2015) The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Mol Psychiatry. doi: 10.1038/mp.2015.159

  16. Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA et al (2013) RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80(2):415–28. doi:10.1016/j.neuron.2013.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haeusler AR, Donnelly CJ, Periz G, Simko EA, Shaw PG et al (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507(7491):195–200. doi:10.1038/nature13124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB et al (2015) The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525(7567):56–61. doi:10.1038/nature14973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jovičić A, Mertens J, Boeynaems S, Bogaert E, Chai N et al (2015) Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci 18(9):1226–9. doi:10.1038/nn.4085

    Article  PubMed  PubMed Central  Google Scholar 

  20. Boeynaems S, Bogaert E, Michiels E, Gijselinck I, Sieben A et al (2016) Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Sci Rep 6:20877. doi:10.1038/srep20877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P et al (2013) Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci U S A 110(47):E4530–9. doi:10.1073/pnas.1318835110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sareen D, O’Rourke JG, Meera P, Muhammad AK, Grant S et al (2013) Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med 5(208):208ra149. doi:10.1126/scitranslmed.3007529

    Article  PubMed  PubMed Central  Google Scholar 

  23. Su Z, Zhang Y, Gendron TF, Bauer PO, Chew J et al (2014) Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron 83(5):1043–50. doi:10.1016/j.neuron.2014.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dias N, Stein CA (2002) Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther 1(5):347–55

    CAS  PubMed  Google Scholar 

  25. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11(2):125–40. doi:10.1038/nrd3625

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Riboldi G, Zanetta C, Ranieri M, Nizzardo M, Simone C, Magri F, Bresolin N, Comi GP et al (2014) Antisense oligonucleotide therapy for the treatment of C9ORF72 ALS/FTD diseases. Mol Neurobiol 50(3):721–32. doi:10.1007/s12035-014-8724-7

    Article  CAS  PubMed  Google Scholar 

  27. Xiao S, MacNair L, McLean J, McGoldrick P, McKeever P, et al., (2016) C9orf72 isoforms in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Brain Res. Apr 29. doi: 10.1016/j.brainres.2016.04.062

  28. van Blitterswijk M, Rademakers R (2015) Neurodegenerative disease: C9orf72 repeats compromise nucleocytoplasmic transport. Nat Rev Neurol 11(12):670–2. doi:10.1038/nrneurol.2015.219

    Article  PubMed  Google Scholar 

  29. Malik R, Roy I (2011) Making sense of therapeutics using antisense technology. Expert Opin Drug Discov 6(5):507–26. doi:10.1517/17460441.2011.565744

    Article  CAS  PubMed  Google Scholar 

  30. Miller TM, Pestronk A, David W, Rothstein J, Simpson E et al (2013) An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 12(5):435–42. doi:10.1016/S1474-4422(13)70061-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mankodi A, Logigian E, Callahan L, McClain C, White R et al (2000) Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289(5485):1769–73

    Article  CAS  PubMed  Google Scholar 

  32. Therrien M, Rouleau GA, Dion PA, Parker JA (2013) Deletion of C9ORF72 results in motor neuron degeneration and stress sensitivity in C. elegans. PLoS ONE 8(12):e83450. doi:10.1371/journal.pone.0083450

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fratta P, Poulter M, Lashley T, Rohrer JD, Polke JM et al (2013) Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia. Acta Neuropathol 26(3):401–9. doi:10.1007/s00401-013-1147-0

    Article  Google Scholar 

  34. Porensky PN, Burghes AH (2013) Antisense oligonucleotides for the treatment of spinal muscular atrophy. Hum Gene Ther 24(5):489–498. doi:10.1089/hum.2012.225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nizzardo M, Simone C, Dametti S, Salani S, Ulzi G, Pagliarani S, Rizzo F, Frattini E et al (2015) Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches. Sci Rep 5:11746. doi:10.1038/srep11746

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nizzardo M, Simone C, Salani S, Ruepp MD, Rizzo F, Ruggieri M, Zanetta C, Brajkovic S et al (2014) Effect of combined systemic and local morpholino treatment on the spinal muscular atrophy delta 7 mouse model phenotype. Clin Ther 36(3):340–56. doi:10.1016/j.clinthera.2014.02.004, e5

    Article  CAS  PubMed  Google Scholar 

  37. Faravelli I, Nizzardo M, Comi GP, Corti S (2015) Spinal muscular atrophy—recent therapeutic advances for an old challenge. Nat Rev Neurol 11(6):351–9. doi:10.1038/nrneurol.2015.77

    Article  CAS  PubMed  Google Scholar 

  38. Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, De Vivo DC, Norris DA, Bennett CF et al (2016) Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy. Neurology 86(10):890–7. doi:10.1212/WNL.0000000000002445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cooper TA, Wan L, Dreyfuss G (2009) RNA and disease. Cell 136(4):777–93. doi:10.1016/j.cell.2009.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grimm D, Kay MA (2007) Therapeutic application of RNAi: is mRNA targeting finally ready for prime time? J Clin Invest 117(12):3633–3641. doi:10.1172/JCI34129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. De Ynigo-Mojado L, Martin-Ruiz I, Sutherland JD (2011) Efficient allele-specific targeting of LRRK2 R1441 mutations mediated by RNAi. PLoS ONE 6(6):e21352. doi:10.1371/journal.pone.0021352

    Article  PubMed  PubMed Central  Google Scholar 

  42. Van Bilsen PH, Jaspers L, Lombardi MS, Odekerken JC, Burright EN, Kaemmerer WF (2008) Identification and allele-specific silencing of the mutant huntingtin allele in Huntington’s disease patient-derived fibroblasts. Hum Gene Ther 19(7):710–719. doi:10.1089/hum.2007.116

    Article  PubMed  Google Scholar 

  43. Xia XG, Zhou H, Zhou S, Yu Y, Wu R, Xu Z (2005) An RNAi strategy for treatment of amyotrophic lateral sclerosis caused by mutant Cu, Zn superoxide dismutase. J Neurochem 92(2):362–367

    Article  CAS  PubMed  Google Scholar 

  44. Rungta RL, Choi HB, Lin PJ et al (2013) Lipid nanoparticle delivery of siRNA to silence neuronal gene expression in the brain. Mol Ther Nucleic Acids 2:e136. doi:10.1038/mtna.2013.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Freibaum BD, Lu Y, Lopez-Gonzalez R, Kim NC, Almeida S et al (2015) GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525(7567):129–33. doi:10.1038/nature14974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weisman-Shomer P, Cohen E, Hershco I, Khateb S, Wolfovitz-Barchad O et al (2003) The cationic porphyrin TMPyP4 destabilizes the tetraplex form of the fragile X syndrome expanded sequence d(CGG)n. Nucleic Acids Res 31(14):3963–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zamiri B, Reddy K, Macgregor RB Jr, Pearson CE (2014) TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins. J Biol Chem 289(8):4653–9. doi:10.1074/jbc.C113.502336

    Article  CAS  PubMed  Google Scholar 

  48. Zhang YJ, Jansen-West K, Xu YF, Gendron TF, Bieniek KF et al (2014) Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol 128(4):505–24. doi:10.1007/s00401-014-1336-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boyce M, Bryant KF, Jousse C, Long K, Harding HP et al (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307(5711):935–9

    Article  CAS  PubMed  Google Scholar 

  50. Rubovitch V, Barak S, Rachmany L, Goldstein RB, Zilberstein Y et al (2015) The neuroprotective effect of salubrinal in a mouse model of traumatic brain injury. Neuromolecular Med 17(1):58–70. doi:10.1007/s12017-015-8340-3

    Article  CAS  PubMed  Google Scholar 

  51. Anuncibay-Soto B, Pérez-Rodríguez D, Santos-Galdiano M, Font E, Regueiro-Purriños M, Fernández-López A (2016) Post-ischemic salubrinal treatment results in a neuroprotective role in global cerebral ischemia. J Neurochem. doi:10.1111/jnc.13651

  52. Vaccaro A, Patten SA, Aggad D, Julien C, Maios C et al (2013) Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo. Neurobiol Dis 55:64–75. doi:10.1016/j.nbd.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  53. Matsuoka M, Komoike Y (2015) Experimental evidence shows salubrinal, an eIF2α dephosphorylation inhibitor, reduces xenotoxicant-induced cellular damage. Int J Mol Sci 16(7):16275–87. doi:10.3390/ijms160716275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Amaral JD, Viana RJ, Ramalho RM, Steer CJ, Rodrigues CM (2009) Bile acids: regulation of apoptosis by ursodeoxycholic acid. J Lipid Res 50(9):1721–34. doi:10.1194/jlr.R900011-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Elia AE, Lalli S, Monsurrò MR, Sagnelli A, Taiello AC et al (2016) Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. Eur J Neurol 23(1):45–52. doi:10.1111/ene.12664

    Article  CAS  PubMed  Google Scholar 

  56. Vang S, Longley K, Steer CJ, Low WC (2014) The unexpected uses of urso- and tauroursodeoxycholic acid in the treatment of non-liver diseases. Glob Adv Health Med 3(3):58–69. doi:10.7453/gahmj.2014.017

    Article  PubMed  PubMed Central  Google Scholar 

  57. Belzil VV, Bauer PO, Prudencio M, Gendron TF, Stetler CT et al (2013) Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol 126(6):895–905. doi:10.1007/s00401-013-1199-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xi Z, Zinman L, Moreno D, Schymick J, Liang Y et al (2013) Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. Am J Hum Genet 92(6):981–9. doi:10.1016/j.ajhg.2013.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xi Z, Zhang M, Bruni AC, Maletta RG, Colao R et al (2015) The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol 129(5):715–27. doi:10.1007/s00401-015-1401-8

    Article  CAS  PubMed  Google Scholar 

  60. Todd PK, Oh SY, Krans A, Pandey UB, Di Prospero NA et al (2010) Histone deacetylases suppress CGG repeat-induced neurodegeneration via transcriptional silencing in models of fragile X tremor ataxia syndrome. PLoS Genet 6(12):e1001240. doi:10.1371/journal.pgen.1001240

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zeier Z, Esanov R, Belle KC, Volmar CH, Johnstone AL et al (2015) Bromodomain inhibitors regulate the C9ORF72 locus in ALS. Exp Neurol 271:241–50. doi:10.1016/j.expneurol.2015.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Muller S, Filippakopoulos P, Knapp S (2011) Bromodomains as therapeutic targets. Expert Rev Mol Med 13:e29. doi:10.1017/S1462399411001992

    Article  PubMed  PubMed Central  Google Scholar 

  63. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB et al (2010) Selective inhibition of BET bromodomains. Nature 468(7327):1067–73. doi:10.1038/nature09504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ferri E, Petosa C, McKenna CE (2015) Bromodomains: structure, function and pharmacology of inhibition. Biochem Pharmacol pii S0006–2952(15):00760–1. doi:10.1016/j.bcp.2015.12.005

    Google Scholar 

  65. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27(1):59–65. doi:10.1038/nbt.1515

    Article  CAS  PubMed  Google Scholar 

  66. Zhang H, Yang B, Mu X, Ahmed SS, Su Q, He R, Wang H, Mueller C et al (2011) Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther 19(8):1440–1448. doi:10.1038/mt.2011.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang D, Gao G (2014) State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications. Discov Med 18(98):151–61

    PubMed  PubMed Central  Google Scholar 

  68. Wang D, Zhong L, Nahid MA, Gao G (2014) The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv 11(3):345–364. doi:10.1517/17425247.2014.871258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. San Sebastian W, Samaranch L, Kells AP, Forsayeth J, Bankiewicz KS (2013) Gene therapy for misfolding protein diseases of the central nervous system. Neurotherapeutics 10(3):498–510. doi:10.1007/s13311-013-0191-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dirren E, Aebischer J, Rochat C, Towne C, Schneider BL, Aebischer P (2015) SOD1 silencing in motoneurons or glia rescues neuromuscular function in ALS mice. Ann Clin Transl Neurol 2(2):167–84. doi:10.1002/acn3.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Borel F, Kay MA, Mueller C (2014) Recombinant AAV as a platform for translating the therapeutic potential of RNA interference. Mol Ther 22(4):692–701. doi:10.1038/mt.2013.285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14(8):475–88. doi:10.1038/nrm3611

    Article  CAS  PubMed  Google Scholar 

  73. Thomsen GM, Gowing G, Latter J et al (2014) Delayed disease onset and extended survival in the SOD1G93A rat model of amyotrophic lateral sclerosis after suppression of mutant SOD1 in the motor cortex. J Neurosci 34(47):15587–15600. doi:10.1523/JNEUROSCI.2037-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  74. Foust KD, Salazar DL, Likhite S, Ferraiuolo L, Ditsworth D, Ilieva H, Meyer K, Schmelzer L et al (2013) Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS. Mol Ther 21(12):2148–59. doi:10.1038/mt.2013.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mori K, Lammich S, Mackenzie IR, Forné I, Zilow S, Kretzschmar H, Edbauer D, Janssens J et al (2013) hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol 125(3):413–23. doi:10.1007/s00401-013-1088-7

    Article  CAS  PubMed  Google Scholar 

  76. Xu Z, Poidevin M, Li X, Li Y, Shu L, Nelson DL, Li H, Hales CM et al (2013) Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc Natl Acad Sci U S A 110(19):7778–83. doi:10.1073/pnas.1219643110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Donnelly CJ, Grima JC, Sattler R (2014) Aberrant RNA homeostasis in amyotrophic lateral sclerosis: potential for new therapeutic targets? Neurodegenerative Dis Manag 4(6):417–437. doi:10.2217/nmt.14.36

    Article  Google Scholar 

  78. Kanadia RN, Shin J, Yuan Y, Beattie SG, Wheeler TM, Thornton CA, Swanson MS (2006) Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc Natl Acad Sci U S A 103(31):11748–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mizielinska S, Isaacs AM (2014) C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia: gain or loss of function? Current Opinion in Neurology 27(5):515–523. doi:10.1097/WCO.0000000000000130

    Article  PubMed  PubMed Central  Google Scholar 

  80. Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, Li L, Chung TK et al (2014) Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene 538(2):217–27. doi:10.1016/j.gene.2013.12.019

    Article  CAS  PubMed  Google Scholar 

  81. Xiao-Jie L, Hui-Ying X, Zun-Ping K, Jin-Lian C, Li-Juan J (2015) CRISPR-Cas9: a new and promising player in gene therapy. J Med Genet 52(5):289–96. doi:10.1136/jmedgenet-2014-102968

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Joint Programme Neurodegenerative Disease (JPND) Research grant “DAMNDPATHS” (2014) and ARISLA grant “smallRNALS” (2014) to SC and Italian Ministry of Health RF-2013-023555764 and Regione Lombardia TRANS-ALS to GPC are gratefully acknowledged. We thank Associazione Amici del Centro Dino Ferrari for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Corti.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Maria Sara Cipolat Mis and Simona Brajkovic contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mis, M.S.C., Brajkovic, S., Tafuri, F. et al. Development of Therapeutics for C9ORF72 ALS/FTD-Related Disorders. Mol Neurobiol 54, 4466–4476 (2017). https://doi.org/10.1007/s12035-016-9993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9993-0

Keywords

Navigation