Skip to main content

Advertisement

Log in

Reversible Pharmacological Induction of Motor Symptoms in MPTP-Treated Mice at the Presymptomatic Stage of Parkinsonism: Potential Use for Early Diagnosis of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A crucial event in the pathogenesis of Parkinson’s disease is the death of dopaminergic neurons of the nigrostriatal system, which are responsible for the regulation of motor function. Motor symptoms first appear in patients 20–30 years after the onset of the neurodegeneration, when there has been a loss of an essential number of neurons and depletion of compensatory reserves of the brain, which explains the low efficiency of treatment. Therefore, the development of a technology for the diagnosing of Parkinson’s disease at the preclinical stage is of a high priority in neurology. In this study, we have developed at an experimental model a fundamentally novel for neurology approach for diagnosis of Parkinson’s disease at the preclinical stage. This methodology, widely used for the diagnosis of chronic diseases in the internal medicine, is based on the application of a challenge test that temporarily increases the latent failure of a specific functional system, thereby inducing the short-term appearance of clinical symptoms. The provocation test was developed by a systemic administration of α-methyl-p-tyrosine (αMpT), a reversible inhibitor of tyrosine hydroxylase to MPTP-treated mice at the presymptomatic stage of parkinsonism. For this, we first selected a minimum dose of αMpT, which caused a decrease of the dopamine level in the striatum of normal mice below the threshold at which motor dysfunctions appear. Then, we found the maximum dose of αMpT at which a loss of dopamine in the striatum of normal mice did not reach the threshold level, and motor behavior was not impaired. We showed that αMpT at this dose induced a decrease of the dopamine concentration in the striatum of MPTP-treated mice at the presymptomatic stage of parkinsonism below a threshold level that results in the impairment of motor behavior. Finally, we proved that αMpT exerts a temporal and reversible influence on the nigrostriatal dopaminergic system of MPTP-treated mice with no long-term side effects on other catecholaminergic systems. Thus, the above experimental data strongly suggest that αMpT-based challenge test might be considered as the provocation test for Parkinson’s disease diagnosis at the preclinical stage in the future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AADC:

Aromatic L-amino acid decarboxylase

DA:

Dopamine

HPLC-ED:

High-performance liquid chromatography with electrochemical detection

l-DOPA:

l-3,4-Dihydroxyphenylalanine

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NE:

Norepinephrine

SN:

Substantia nigra

αMpT:

α-methyl-p-tyrosine

ТН:

Tyrosine hydroxylase

References

  1. Becker G, Muller A, Braune S et al (2002) Early diagnosis of Parkinson’s disease. J Neurol 249 Suppl:III/40–III/48. doi:10.1007/s00415-002-1309-9

    Google Scholar 

  2. Spiegel J, Storch A, Jost WH (2006) Early diagnosis of Parkinson’s disease. J Neurol 253:iv2–iv7. doi:10.1007/s00415-006-4002-6

    Article  PubMed  Google Scholar 

  3. Gaenslen A, Berg D (2010) Early diagnosis of Parkinson’s disease. Int Rev Neurobiol 90:81–92. doi:10.1016/S0074-7742(10)90006-8

    Article  PubMed  Google Scholar 

  4. De Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535. doi:10.1016/S1474-4422(06)70471-9

    Article  PubMed  Google Scholar 

  5. Dorsey ER, Constantinescu R, Thompson JP et al (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386. doi:10.1212/01.wnl.0000247740.47667.03

    Article  CAS  PubMed  Google Scholar 

  6. Alves G, Forsaa EB, Pedersen KF et al (2008) Epidemiology of Parkinson’s disease. J Neurol 255 Suppl:18–32. doi:10.1007/s00415-008-5004-3

    Article  Google Scholar 

  7. Von Campenhausen S, Winter Y, Rodrigues e Silva A (2011) Costs of illness and care in Parkinson’s disease: an evaluation in six countries. Eur Neuropsychopharmacol 21:180–191. doi:10.1016/j.euroneuro.2010.08.002

    Article  Google Scholar 

  8. Thies W, Bleiler L, Association A, Alzheimer’s A (2013) Alzheimer’s disease facts and figures. Alzheimer’s Dement 9:208–245. doi:10.1016/j.jalz.2013.02.003

    Article  Google Scholar 

  9. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  10. Agid Y (1991) Parkinson’s disease: pathophysiology. Lancet 337:1321–1324

    Article  CAS  PubMed  Google Scholar 

  11. Ehringer H, Hornykiewicz O (1998) Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Park Relat Disord 4:53–57

    Article  CAS  Google Scholar 

  12. Ugrumov MV (2008) Brain neurons partly expressing monoaminergic phenotype: distribution, development, and functional significance in norm and pathology. In: Lajtha A, Vizi ES (eds) Handb. Neurochem. Mol. Neurobiol. Springer, US, pp 21–73

    Chapter  Google Scholar 

  13. Musiek ES, Schindler SE (2013) Alzheimer disease: current concepts & future directions. Mo Med 110:395–400

    PubMed  Google Scholar 

  14. Willis AW (2013) Parkinson disease in the elderly adult. Mo Med 110:406–410

    PubMed  Google Scholar 

  15. Bogdanov M, Matson WR, Wang L et al (2008) Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 131:389–396. doi:10.1093/brain/awm304

    Article  PubMed  Google Scholar 

  16. Wu Y, Le W, Jankovic J et al (2011) Preclinical biomarkers of Parkinson disease. Arch Neurol 68:22–30. doi:10.1001/archneurol.2010.321

    PubMed  Google Scholar 

  17. Parnetti L, Castrioto A, Chiasserini D et al (2013) Cerebrospinal fluid biomarkers in Parkinson disease. Nat Rev Neurol 9:131–140. doi:10.1038/nrneurol.2013.10

    Article  CAS  PubMed  Google Scholar 

  18. Sharma S, Moon CS, Khogali A et al (2013) Biomarkers in Parkinson’s disease (recent update). Neurochem Int 63:201–229. doi:10.1016/j.neuint.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  19. Tokuda T, Qureshi MM, Ardah MT et al (2010) Detection of elevated levels of alpha-synuclein oligomers in CSF from patients with Parkinson disease. Neurology 75:1766–1772. doi:10.1212/WNL.0b013e3181fd613b

    Article  CAS  PubMed  Google Scholar 

  20. DeKosky ST, Marek K (2003) Looking backward to move forward: early detection of neurodegenerative disorders. Science 302:830–834. doi:10.1126/science.1090349

    Article  CAS  PubMed  Google Scholar 

  21. Pellicano C, Benincasa D, Pisani V et al (2007) Prodromal non-motor symptoms of Parkinson’s disease. Neuropsychiatr Dis Treat 3:145–151. doi:10.2147/nedt.2007.3.1.145

    Article  PubMed  PubMed Central  Google Scholar 

  22. Takahashi K (2013) Non-motor symptoms in premotor phase of Parkinson disease. Rinsho Shinkeigaku 53:974–976

    Article  PubMed  Google Scholar 

  23. Berg D (2006) Marker for a preclinical diagnosis of Parkinson’s disease as a basis for neuroprotection. J Neural Transm Suppl 71:123–32

  24. Freeman RK (1975) The use of the oxytocin challenge test for antepartum clinical evaluation of uteroplacental respiratory function. Am J Obs Gynecol 121:481–489

    Article  CAS  Google Scholar 

  25. Gambrell RD, Massey FM, Castaneda TA et al (1980) Use of the progestogen challenge test to reduce the risk of endometrial cancer. Obstet Gynecol 55:732–738

    PubMed  Google Scholar 

  26. Ginsburg R, Bristow MR, Kantrowitz N et al (1981) Histamine provocation of clinical coronary artery spasm: implications concerning pathogenesis of variant angina pectoris. Am Hear J 102:819–822

    Article  CAS  Google Scholar 

  27. Lebecque P, Spier S, Lapierre JG et al (1987) Histamine challenge test in children using forced oscillation to measure total respiratory resistance. Chest 92:313–318

    Article  CAS  PubMed  Google Scholar 

  28. Phillips LS, Ziemer DC, Kolm P et al (2009) Glucose challenge test screening for prediabetes and undiagnosed diabetes. Diabetologia 52:1798–1807. doi:10.1007/s00125-009-1407-7

    Article  CAS  PubMed  Google Scholar 

  29. Witek P, Zgliczyński W, Zieliński G, Jeske W (2010) The role of combined low-dose dexamethasone suppression test and desmopressin stimulation test in the diagnosis of persistent Cushing’s disease. Case report. Endokrynol Pol 61:312–317

    PubMed  Google Scholar 

  30. Gasco V, Beccuti G, Baldini C et al (2013) Acylated ghrelin as a provocative test for the diagnosis of GH deficiency in adults. Eur J Endocrinol 168:23–30. doi:10.1530/EJE-12-0584

    Article  CAS  PubMed  Google Scholar 

  31. Hermann LK, Newman DH, Pleasant WA et al (2013) Yield of routine provocative cardiac testing among patients in an emergency department-based chest pain unit. JAMA Intern Med 173:1128–1133. doi:10.1001/jamainternmed.2013.850

    Article  PubMed  Google Scholar 

  32. Porsbjerg C, Sverrild A, Backer V (2015) Combining the mannitol test and FeNO in the assessment of poorly controlled asthma. J Allergy Clin Immunol Pract 3:1–7. doi:10.1016/j.jaip.2015.02.005

    Article  Google Scholar 

  33. Rhee N, Oh KY, Yang EM, Kim CJ (2015) Growth hormone responses to provocative tests in children with short stature. Chonnam Med J 51:33–38. doi:10.4068/cmj.2015.51.1.33

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sun Q, Sha W, Gui X-W et al (2015) Drug-induced lymphocyte stimulation test in the prediction of drug-induced hypersensitivity to antituberculosis drugs. Diagn Microbiol Infect Dis 82:172–176. doi:10.1016/j.diagmicrobio.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  35. Sedelis M, Schwarting RKW, Huston JP (2001) Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease. Behav Brain Res 125:109–125. doi:10.1016/S0166-4328(01)00309-6

    Article  CAS  PubMed  Google Scholar 

  36. Rech RH, Borys HK, Moore KE (1966) Alterations in behavior and brain catecholamine levels in rats treated with alpha-methyltyrosine. J Pharmacol Exp Ther 153:412–419

    CAS  PubMed  Google Scholar 

  37. Hutchins DA, Rogers KJ (1973) Effect of depletion of cerebral monoamines on the concentration of glycogen and on amphetamine-induced glycogenolysis in the brain. Br J Pharmacol 48:19–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Relationships D (1978) Inhibition of the in vivo biosynthesis and changes of catecholamine levels in rat brain after α-methyl-p-tyrosine; time- and dose-response relationships. Naunyn-Schmiedeberg’s Arch Pharmacol 123:111–123

    Google Scholar 

  39. Paxinos G, Franklin K (2012) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates, 4th edn. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  40. Ugrumov MV, Khaindrava VG, Kozina EA et al (2011) Modeling of presymptomatic and symptomatic stages of parkinsonism in mice. Neuroscience 181:175–188. doi:10.1016/j.neuroscience.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  41. Carlsson A, Lindqvist M (1973) In-vivo measurements of tryptophan and tyrosine hydroxylase activities in mouse brain. J Neural Transm 34:79–91

    Article  CAS  PubMed  Google Scholar 

  42. Izvolskaia M, Duittoz AH, Tillet Y, Ugrumov MV (2009) The influence of catecholamine on the migration of gonadotropin-releasing hormone-producing neurons in the rat foetuses. Brain Struct Funct 213:289–300. doi:10.1007/s00429-008-0197-x

    Article  CAS  PubMed  Google Scholar 

  43. Ugrumov MV (2009) Non-dopaminergic neurons partly expressing dopaminergic phenotype: distribution in the brain, development and functional significance. J Chem Neuroanat 38:241–256. doi:10.1016/j.jchemneu.2009.08.004

    Article  CAS  PubMed  Google Scholar 

  44. Arluison M, Dietl M, Thibault J (1984) Ultrastructural morphology of dopaminergic nerve terminals and synapses in the striatum of the rat using tyrosine hydroxylase immunocytochemistry: a topographical study. Brain Res Bull 13:269–285

    Article  CAS  PubMed  Google Scholar 

  45. Ugrumov MV (2013) Brain neurons partly expressing dopaminergic phenotype. Adv Pharmacol 68:37–91. doi:10.1016/B978-0-12-411512-5.00004-X

    Article  CAS  PubMed  Google Scholar 

  46. Gobert A, Billiras R, Cistarelli L, Millan MJ (2004) Quantification and pharmacological characterization of dialysate levels of noradrenaline in the striatum of freely-moving rats: release from adrenergic terminals and modulation by alpha2-autoreceptors. J Neurosci Methods 140:141–152. doi:10.1016/j.jneumeth.2004.04.040

    Article  CAS  PubMed  Google Scholar 

  47. Kurosaki R, Muramatsu Y, Watanabe H et al (2003) Role of dopamine transporter against MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity in mice. Metab Brain Dis 18:139–146

    Article  CAS  PubMed  Google Scholar 

  48. Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247

    Article  CAS  PubMed  Google Scholar 

  49. Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7:3915–3934

    CAS  PubMed  Google Scholar 

  50. Gurevich IB, Kozina EA, Myagkov AA et al (2010) Automating extraction and analysis of dopaminergic axon terminals in images of frontal slices of the striatum. Pattern Recognit Image Anal Adv Math Theory Appl 20:349–359. doi:10.1134/S1054661810030119

    Article  Google Scholar 

  51. Smolen AJ (1990) Image analytic techniques for quantification of immunohistochemical staining in the nervous system. Methods Neurosci 3:208–229

    Article  Google Scholar 

  52. Borke RC, Curtis M, Ginsberg C (1993) Choline acetyltransferase and calcitonin gene-related peptide immunoreactivity in motoneurons after different types of nerve injury. J Neurocytol 22:141–153

    Article  CAS  PubMed  Google Scholar 

  53. Lucas LR, Harlan RE (1995) Cholinergic regulation of tachykinin- and enkephalin-gene expression in the rat striatum. Brain Res Mol Brain Res 30:181–195

    Article  CAS  PubMed  Google Scholar 

  54. Chang HM, Wu UI, Lan CT (2009) Melatonin preserves longevity protein (sirtuin 1) expression in the hippocampus of total sleep-deprived rats. J Pineal Res 47:211–220. doi:10.1111/j.1600-079X.2009.00704.x

    Article  CAS  PubMed  Google Scholar 

  55. Balan IS, Ugrumov MV, Calas A et al (2000) Tyrosine hydroxylase-expressing and/or aromatic L-amino acid decarboxylase-expressing neurons in the mediobasal hypothalamus of perinatal rats: differentiation and sexual dimorphism. J Comp Neurol 425:167–176

    Article  CAS  PubMed  Google Scholar 

  56. Abramova MA, Calas A, Ugrumov MV (2011) Vasopressinergic neurons of the supraoptic nucleus in perinatal rats: reaction to osmotic stimulation and its regulation. Brain Struct Funct 215:195–207. doi:10.1007/s00429-010-0290-9

    Article  CAS  PubMed  Google Scholar 

  57. Levitt M, Spector S, Sjoerdsma A, Udenfriend S (1965) Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea-pig heart. J Pharmacol Exp Ther 148:1–8

    CAS  PubMed  Google Scholar 

  58. Bernheimer H, Birkmayer W, Hornykiewicz O et al (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    Article  CAS  PubMed  Google Scholar 

  59. Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 4:257–269

    Article  CAS  PubMed  Google Scholar 

  60. Kurkowska-Jastrzebska I, Wronska A, Kohutnicka M et al (1999) The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp Neurol 156:50–61. doi:10.1006/exnr.1998.6993

    Article  CAS  PubMed  Google Scholar 

  61. Wu D-C, Teismann P, Tieu K et al (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci U S A 100:6145–6150. doi:10.1073/pnas.0937239100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Luchtman DW, Shao D, Song C (2009) Behavior, neurotransmitters and inflammation in three regimens of the MPTP mouse model of Parkinson’s disease. Physiol Behav 98:130–138. doi:10.1016/j.physbeh.2009.04.021

    Article  CAS  PubMed  Google Scholar 

  63. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. doi:10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  64. Bezard E, Gross CE, Fournier MC et al (1999) Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter. Exp Neurol 155:268–273. doi:10.1006/exnr.1998.6995

    Article  CAS  PubMed  Google Scholar 

  65. Kim RH, Smith PD, Aleyasin H et al (2005) Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci U S A 102:5215–5220. doi:10.1073/pnas.0501282102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dauer W, Kholodilov N, Vila M et al (2002) Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci U S A 99:14524–14529. doi:10.1073/pnas.172514599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fuller RW, Steranka LR (1985) Central and peripheral catecholamine depletion by 1-methyl-4-phenyl-tetrahydropyridine (MPTP) in rodents. Life Sci 36:243–247

    Article  CAS  PubMed  Google Scholar 

  68. Seniuk NA, Tatton WG, Greenwood CE (1990) Dose-dependent destruction of the coeruleus-cortical and nigral-striatal projections by MPTP. Brain Res 527:7–20

    Article  CAS  PubMed  Google Scholar 

  69. Petrucelli L, Dickson DW (2008) Neuropathology of Parkinson’s disease. In: Nass R, Przedborski S (eds) Parkinson’s disease: molecular and therapeutic insights from model systems. Elsevier Inc, Amsterdam, pp 35–48

    Chapter  Google Scholar 

  70. Wu DC, Jackson-Lewis V, Vila M et al (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771

    CAS  PubMed  Google Scholar 

  71. Teismann P, Ferger B (2001) Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson’s disease. Synapse 39:167–174. doi:10.1002/1098-2396(200102)39:2<167::AID-SYN8>3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  72. Du Y, Ma Z, Lin S et al (2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci U S A 98:14669–14674. doi:10.1073/pnas.251341998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. German DC, Dubach M, Askari S et al (1988) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonian syndrome in Macaca fascicularis: which midbrain dopaminergic neurons are lost? Neuroscience 24:161–174

    Article  CAS  PubMed  Google Scholar 

  74. Rousselet E, Joubert C, Callebert J et al (2003) Behavioral changes are not directly related to striatal monoamine levels, number of nigral neurons, or dose of parkinsonian toxin MPTP in mice. Neurobiol Dis 14:218–228

    Article  CAS  PubMed  Google Scholar 

  75. Sandyk R, Iacono RP, Bamford CR (1987) The hypothalamus in Parkinson disease. Ital J Neurol Sci 8:227–234

    Article  CAS  PubMed  Google Scholar 

  76. Halliday GM, Blumbergs PC, Cotton RG et al (1990) Loss of brainstem serotonin- and substance P-containing neurons in Parkinson’s disease. Brain Res 510:104–107

    Article  CAS  PubMed  Google Scholar 

  77. Spector S, Sjoerdsma A, Udenfriend S (1965) Blockade of endogenous norepinephrine synthesis by agr-methyl-tyrosine, an inhibitor of tyrosine hydroxylase. J Pharmacol Exp Ther 147:86–95

    CAS  PubMed  Google Scholar 

  78. Moore KE, Rech RH (1967) Antagonism by monoamine oxidase inhibitors of alpha-methyltyrosine-induced catecholamine depletion and behavioral depression. J Pharmacol Exp Ther 156:70–75

    CAS  PubMed  Google Scholar 

  79. Moore KE (1968) Behavioural effects of alpha-methyltyrosine administered in the diets of mice pretreated with a monoamine oxidase inhibitor. J Pharm Pharmacol 20:656–657

    Article  CAS  PubMed  Google Scholar 

  80. Dominic JA, Moore KE (1969) Acute effects of alpha-methyltyrosine on brain catecholamine levels and on spontaneous and amphetamine-stimulated motor activity in mice. Arch Int Pharmacodyn Ther 178:166–176

    CAS  PubMed  Google Scholar 

  81. Corrodi H, Hanson LC (1966) Central effects of an inhibitor of tyrosine hydroxylation. Psychopharmacologia 10:116–125

    Article  CAS  PubMed  Google Scholar 

  82. Dolphin AC, Jenner P, Marsden CD (1976) The relative importance of dopamine and noradrenaline receptor stimulation for the restoration of motor activity in reserpine or alpha-methyl-p-tyrosine pre-treated mice. Pharmacol Biochem Behav 4:661–670

    Article  CAS  PubMed  Google Scholar 

  83. Lorenc-Koci E, Ossowska K, Wardas J, Wolfarth S (1995) Does reserpine induce parkinsonian rigidity? J Neural Transm Park Dis Dement Sect 9:211–223

    Article  CAS  PubMed  Google Scholar 

  84. Bloemen OJN, De Koning MB, Boot E et al (2008) Challenge and therapeutic studies using alpha-methyl-para-tyrosine (AMPT) in neuropsychiatric disorders: a review. Cent Nerv Syst Agents Med Chem (Formerly Curr Med Chem Nerv Syst Agents) 8:249–256

    Article  CAS  Google Scholar 

  85. Perry RR, Keiser HR, Norton JA et al (1990) Surgical management of pheochromocytoma with the use of metyrosine. Ann Surg 212:621–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stine SM, Krystal JH, Petrakis IL et al (1997) Effect of alpha-methyl-para-tyrosine on response to cocaine challenge. Biol Psychiatry 42:181–190. doi:10.1016/S0006-3223(96)00331-9

    Article  CAS  PubMed  Google Scholar 

  87. Turner MC, Lieberman E, DeQuattro V (1992) The perioperative management of pheochromocytoma in children. Clin Pediatr (Phila) 31:583–589. doi:10.1053/jcan.2002.124150

    Article  CAS  Google Scholar 

  88. Engelman K, Horwitz D, Jequier E, Sjoerdsma A (1968) Biochemical and pharmacologic effects of alpha-methyltyrosine in man. J Clin Invest 47:577–594. doi:10.1172/JCI105754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jones NF, Walker G, Ruthven CR, Sandler M (1968) Alpha-methyl-p-tyrosine in the management of phaeochromocytoma. Lancet (London, England) 2:1105–1109

    Article  CAS  Google Scholar 

  90. Boot E, Booij J, Hasler G et al (2008) AMPT-induced monoamine depletion in humans: evaluation of two alternative [123I]IBZM SPECT procedures. Eur J Nucl Med Mol Imaging 35:1350–1356. doi:10.1007/s00259-008-0739-8

    Article  PubMed  PubMed Central  Google Scholar 

  91. Boot E, Booij J, Zinkstok J et al (2008) Disrupted dopaminergic neurotransmission in 22q11 deletion syndrome. Neuropsychopharmacology 33:1252–1258. doi:10.1038/sj.npp.1301508

    Article  CAS  PubMed  Google Scholar 

  92. Lang AE, Marsden CD (1982) Alpha methylparatyrosine and tetrabenazine in movement disorders. Clin Neuropharmacol 5:375–387

    Article  CAS  PubMed  Google Scholar 

  93. Ankenman R, Salvatore MF (2007) Low dose alpha-methyl-para-tyrosine (AMPT) in the treatment of dystonia and dyskinesia. J Neuropsychiatry Clin Neurosci 19:65–69. doi:10.1176/jnp.2007.19.1.65

    Article  CAS  PubMed  Google Scholar 

  94. Birkmayer W, Mentasti M (1967) Further experimental studies on the catecholamine metabolism in extrapyramidal diseases (Parkinson and chorea syndromes). Arch Psychiatr Nervenkr 210:29–35

    Article  CAS  PubMed  Google Scholar 

  95. Hrachovy RA, Frost JDJ, Glaze DG, Rose D (1989) Treatment of infantile spasms with methysergide and alpha-methylparatyrosine. Epilepsia 30:607–610

    Article  CAS  PubMed  Google Scholar 

  96. Laruelle M, D’Souza CD, Baldwin RM et al (1997) Imaging D2 receptor occupancy by endogenous dopamine in humans. Neuropsychopharmacology 17:162–174. doi:10.1016/S0893-133X(97)00043-2

    Article  CAS  PubMed  Google Scholar 

  97. Booij L, Van der Does AJ, Riedel WJ (2003) Monoamine depletion in psychiatric and healthy populations: review. Mol Psychiatry 8:951–973. doi:10.1038/sj.mp.4001423

    Article  CAS  PubMed  Google Scholar 

  98. Becker G, Seufert J, Bogdahn U et al (1995) Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 45:182–184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ekaterina Degtyareva and Anna Kolacheva for technical assistance.

Authors’ Contributions

G.R.K. performed the motor behavior experiments, HPLC and statistical analysis; E.A.K. performed immunohistochemistry and statistical analysis; V.G.K. assisted with motor behavior experiments; G.R.K., E.A.K. analyzed the data; M.V.U. initiated and coordinated the study; G.R.K., E.A.K., M.V.U. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V. Ugrumov.

Ethics declarations

All the experimental procedures were carried out in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80-23) revised 1996 and the UK Animals (Scientific Procedures) Act 1986 and associated guidelines, or the European Communities Council Directive of 24 November 1986 (86/609/EEC) for care and use of laboratory animals and were approved by the Animal Care and Use Committee of the Institute of Developmental Biology of the Russian Academy of Sciences.

Competing Interests

The authors declare that they have no competing interests.

Funding

This work was supported by the Federal Targeted Programme Research and Development in Priority Areas of Scientific and Technological Complex of Russia for 2014–2020 years of the Ministry of Education and Science of RF (a contract No 14.604.21.0073 for 2014–2016).

Additional information

Gulnara R. Khakimova and Elena A. Kozina contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khakimova, G.R., Kozina, E.A., Kucheryanu, V.G. et al. Reversible Pharmacological Induction of Motor Symptoms in MPTP-Treated Mice at the Presymptomatic Stage of Parkinsonism: Potential Use for Early Diagnosis of Parkinson’s Disease. Mol Neurobiol 54, 3618–3632 (2017). https://doi.org/10.1007/s12035-016-9936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9936-9

Keywords

Navigation