Skip to main content

Advertisement

Log in

Hypothesizing Music Intervention Enhances Brain Functional Connectivity Involving Dopaminergic Recruitment: Common Neuro-correlates to Abusable Drugs

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The goal of this review is to explore the clinical significance of music listening on neuroplasticity and dopaminergic activation by understanding the role of music therapy in addictive behavior treatment. fMRI data has shown that music listening intensely modifies mesolimbic structural changes responsible for reward processing (e.g., nucleus accumbens [NAc]) and may control the emotional stimuli’s effect on autonomic and physiological responses (e.g., hypothalamus). Music listening has been proven to induce the endorphinergic response blocked by naloxone, a common opioid antagonist. NAc opioid transmission is linked to the ventral tegmental area (VTA) dopamine release. There are remarkable commonalities between listening to music and the effect of drugs on mesolimbic dopaminergic activation. It has been found that musical training before the age of 7 results in changes in white-matter connectivity, protecting carriers with low dopaminergic function (DRD2A1 allele, etc.) from poor decision-making, reward dependence, and impulsivity. In this article, we briefly review a few studies on the neurochemical effects of music and propose that these findings are relevant to the positive clinical findings observed in the literature. We hypothesize that music intervention enhances brain white matter plasticity through dopaminergic recruitment and that more research is needed to explore the efficacy of these therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pinho AL, de Manzano O, Fransson P, Eriksson H, Ullén F (2014) Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. J Neurosci 34(18):6156–6163. doi:10.1523/JNEUROSCI.4769-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gold MS, Blum K, Oscar-Berman M, Braverman ER (2014) Low dopamine function in attention deficit/hyperactivity disorder: should genotyping signify early diagnosis in children? Postgrad Med 126(1):153–177. doi:10.3810/pgm.2014.01.2735

    Article  PubMed  PubMed Central  Google Scholar 

  3. Morse S, Giordano J, Perrine K, Downs BW, Waite RL et al (2011) Audio Therapy Significantly Attenuates Aberrant Mood in Residential Patient Addiction Treatment: Putative Activation of Dopaminergic Pathways in the Meso-Limbic Reward Circuitry of Humans. J Addict Res Ther S3:001. doi:10.4172/2155-6105.S3-001

    Google Scholar 

  4. Blum K, Chen TJ, Chen AL, Madigan M, Downs BW et al (2010) Do dopaminergic gene polymorphisms affect mesolimbic reward activation of music listening response? Therapeutic impact on Reward Deficiency Syndrome (RDS). Med Hypotheses 74(3):513–520. doi:10.1016/j.mehy.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  5. Menon V, Levitin DJ (2005) The rewards of music listening: response and physiological connectivity of the mesolimbic system. Neuroimage 28(1):175–184, Epub 2005 Jul 14

    Article  CAS  PubMed  Google Scholar 

  6. Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ (2011) Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci 14(2):257–262. doi:10.1038/nn.2726

    Article  CAS  PubMed  Google Scholar 

  7. Goldstein A (1980) Thrills in response to music and other stimuli. Physiol Psych 8(1):126–129. doi:10.3758/BF03326460

    Article  Google Scholar 

  8. McHugh MJ, Demers CH, Braud J, Briggs R, Adinoff B, Stein EA (2013) Striatal-insula circuits in cocaine addiction: implications for impulsivity and relapse risk. Am J Drug Alcohol Abuse 39(6):424–432. doi:10.3109/00952990.2013.847446

    Article  PubMed  Google Scholar 

  9. García-García I, Jurado MÁ, Garolera M, Segura B, Sala-Llonch R et al (2013) Alterations of the salience network in obesity: a resting-state fMRI study. Hum Brain Mapp 34(11):2786–2797. doi:10.1002/hbm.22104

    Article  PubMed  Google Scholar 

  10. Ding WN, Sun JH, Sun YW, Zhou Y, Li L, Xu JR, Du YS (2013) Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction. PLoS One 8(3):e59902. doi:10.1371/journal.pone.0059902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alluri V, Toiviainen P, Lund TE, Wallentin M, Vuust P et al (2013) From Vivaldi to Beatles and back: predicting lateralized brain responses to music. Neuroimage 83:627–636. doi:10.1016/j.neuroimage.2013.06.064

    Article  PubMed  Google Scholar 

  12. Wu J, Zhang J, Ding X, Li R, Zhou C (2013) The effects of music on brain functional networks: a network analysis. Neuroscience 250:49–59. doi:10.1016/j.neuroscience.2013.06.021

    Article  CAS  PubMed  Google Scholar 

  13. Keller J, Young CB, Kelley E, Prater K, Levitin DJ, Menon V (2013) Trait anhedonia is associated with reduced reactivity and connectivity of mesolimbic and paralimbic reward pathways. J Psychiatr Res 47(10):1319–1328. doi:10.1016/j.jpsychires.2013.05.015

    Article  PubMed  Google Scholar 

  14. Bell RP, Foxe JJ, Nierenberg J, Hoptman MJ, Garavan H (2011) Assessing white matter integrity as a function of abstinence duration in former cocaine-dependent individuals. Drug Alcohol Depend 114(2-3):159–168. doi:10.1016/j.drugalcdep.2010.10.001

    PubMed  Google Scholar 

  15. Lim KO, Wozniak JR, Mueller BA, Franc DT, Specker SM et al (2008) Brain macrostructural and microstructural abnormalities in cocaine dependence. Drug Alcohol Depend 92(1-3):164–172, Epub 2007 Sep 29

    Article  CAS  PubMed  Google Scholar 

  16. Izquierdo A, Jentsch JD (2012) Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology (Berl) 219(2):607–620. doi:10.1007/s00213-011-2579-7

    Article  CAS  Google Scholar 

  17. van der Schaaf ME, Zwiers MP, van Schouwenburg MR, Geurts DE, Schellekens AF et al (2013) Dopaminergic drug effects during reversal learning depend on anatomical connections between the orbitofrontal cortex and the amygdala. Front Neurosci 7:142. doi:10.3389/fnins.2013.00142

    PubMed  PubMed Central  Google Scholar 

  18. Ross S, Cidambi I, Dermatis H, Weinstein J, Ziedonis D et al (2008) Music therapy: a novel motivational approach for dually diagnosed patients. J Addict Dis 27(1):41–53. doi:10.1300/J069v27n01_05

    Article  PubMed  Google Scholar 

  19. Steele CJ, Bailey JA, Zatorre RJ, Penhune VB (2013) Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J Neurosci 33(3):1282–1290. doi:10.1523/JNEUROSCI.3578-12

    Article  CAS  PubMed  Google Scholar 

  20. Luhar RB, Sawyer KS, Gravitz Z, Ruiz SM, Oscar-Berman M (2013) Brain volumes and neuropsychological performance are related to current smoking and alcoholism history. Neuropsychiatr Dis Treat 9:1767–1784. doi:10.2147/NDT.S52298

    Article  PubMed  PubMed Central  Google Scholar 

  21. Moore E, Schaefer RS, Bastin ME, Roberts N, Overy K (2014) Can musical training influence brain connectivity? Evidence from diffusion tensor MRI. Brain Sci 4(2):405–427. doi:10.3390/brainsci4020405

    Article  PubMed  PubMed Central  Google Scholar 

  22. Imfeld A, Oechslin MS, Meyer M, Loenneker T, Jancke L (2009) White matter plasticity in the corticospinal tract of musicians: a diffusion tensor imaging study. Neuroimage 46(3):600–6007. doi:10.1016/j.neuroimage.2009.02.025

    Article  PubMed  Google Scholar 

  23. Han Y, Yang H, Lv YT, Zhu CZ, He Y et al (2009) Gray matter density and white matter integrity in pianists’ brain: a combined structural and diffusion tensor MRI study. Neurosci Lett 459(1):3–6. doi:10.1016/j.neulet.2008.07.056

    Article  CAS  PubMed  Google Scholar 

  24. Schmithorst VJ, Wilke M (2002) Differences in white matter architecture between musicians and non-musicians: a diffusion tensor imaging study. Neurosci Lett 321(1-2):57–60

    Article  CAS  PubMed  Google Scholar 

  25. Zatorre R, McGill J (2005) Music, the food of neuroscience? Nature 434(7031):312–315. doi:10.1038/434312a

    Article  CAS  PubMed  Google Scholar 

  26. Reuter M, Roth S, Holve K, Hennig J (2006) Identification of first candidate genes for creativity: a pilot study. Brain Res 1069:190–197, Epub 2006 Jan 3

    Article  CAS  PubMed  Google Scholar 

  27. Winner E (1996) Gifted Children: Myths and Realities. Basic Books, New York

    Google Scholar 

  28. Martindale C (2006) The concept of creativity: prospects and paradigms. In: Sternberg RJ, Lubart TI (eds) Handbook of creativity. Cambridge University Press, New York, pp 137–152

    Google Scholar 

  29. Bengtsson S, Csíkszentmihályi M, Ullén F (2007) Cortical regions involved in the generation of musical structures during improvisation in pianists. J Cogn Neurosci 19(5):830–842

    Article  PubMed  Google Scholar 

  30. Limb CJ, Braun AR (2008) Neural substrates of spontaneous musical performance: an fMRI study of jazz improvisation. PLoS One 3(2):e1679. doi:10.1371/journal.pone.0001679

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fink S, Excoffier L, Heckel G (2007) High variability and non-neural evolution of the mammalian avpr1a gene. BMC Evol Biol 7:176. doi:10.1186/1471-2148-7-176

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wassink TH, Piven J, Vieland VJ, Pietila J, Goedken RJ et al (2004) Examination of AVPR1a as an autism susceptibility gene. Mol Psychiatry 9:968–972

    Article  CAS  PubMed  Google Scholar 

  33. Thompson R, Gupta S, Mills S, Orr S (2004) The effects of vasopressin on human facial responses related to social communication. Psychoneuroendrocrinology 29(1):35–48

    Article  CAS  Google Scholar 

  34. Hammock EAD, Young LJ (2006) Oxytocin, vasopressin and pair bonding: implications for autism. Philos Trans R Soc Lond B Biol Sci 361(1476):2187–2198. doi:10.1098/rstb.2006.1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bachner-Melman R, Zohar AH, Bacon-Shnoor N, Elizur Y, Nemanov L et al (2005) Link between vasopressin receptor AVPR1A promoter region microsatellites and measures of social behavior in humans. J Individ Differ 26:2–10. doi:10.1027/1614-0001.26.1.2

    Article  Google Scholar 

  36. Zeki S (2007) The neurobiology of love. FEBS Lett 581:2575–2579

    Article  CAS  PubMed  Google Scholar 

  37. Knafo A, Israel S, Darvasi A, Bachner-Melmann R, Uzefovsky F et al (2008) Individual differences in allocation of funds in the dictator game associated with length of the arginine vasopressin 1a receptor RS3 promoter region and correlation between RS3 length and hippocampal mRNA. Genes Brain Behav 7:266–275

    Article  CAS  PubMed  Google Scholar 

  38. Barnett JH, Heron J, Ring SM, Golding J, Goldman D et al (2007) Gender-specific effects of the catechol-O-methyltransferase Val108/158Met polymorphism on cognitive function in children. Am J Psychiatry 164:142–149

    Article  PubMed  Google Scholar 

  39. Kremer I, Bachner-Melman R, Reshef A, Broude L, Nemanov L et al (2005) Association of serotonin transporter gene with smoking behavior. Am J Psychiatry 162:924–930

    Article  PubMed  Google Scholar 

  40. Bachner-Melman R, Dina C, Zohar AH, Constantini N, Lerer E et al (2005) AVPR1a and SLC6A4 gene polymorphisms Are associated with creative dance performance. PLoS Genet 1(3):e42. doi:10.1371/journal.pgen.0010042

    Article  PubMed  PubMed Central  Google Scholar 

  41. Granot R, Frankel Y, Gritsenko V, Lerer E, Gritsenko I, et al. (2007) Provisional evidence that the arginine vasopressin 1a receptor gene is associated with musical memory. Evol Human Behav 28:313–318. doi: 2007.05.003

  42. Cooper MI (1961) The enzymic oxidation of tryptophan to 5-hydroxytryptophan in the biosynthesis of serotonin. J Pharmacol Exp Ther 132:265–268

    CAS  PubMed  Google Scholar 

  43. Reuter M, Hennig J (2005) Pleiotropic effect of the TPH A779C polymorphism on nicotine dependence and personality. Am J Med Genet B Neuropsychiatr Genet 134B(1):20–24

    Article  CAS  PubMed  Google Scholar 

  44. Gosso MF, de Geus EJ, Polderman TJ, Boomsma DI, Heutink P et al (2008) Catechol O-methyl transferase and dopamine D2 receptor gene polymorphisms: evidence of positive heterosis and gene–gene interaction on working memory functioning. Eur J Hum Genet 16:1075–1082. doi:10.1038/ejhg.2008.57

    Article  CAS  PubMed  Google Scholar 

  45. Aleman A, Swart M, van Rijn S (2008) Brain imaging, genetics and emotion. Biol Psychol 79(1):58–69. doi:10.1016/j.biopsycho.2008.01.009

    Article  PubMed  Google Scholar 

  46. Zhang X, Li J, Qin W, Yu C, Liu B, Jiang T (2015) The catechol-o-methyltransferase Val(158)Met polymorphism modulates the intrinsic functional network centrality of the parahippocampal cortex in healthy subjects. Sci Rep 5:10105. doi:10.1038/srep10105

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hill SY, Lichenstein S, Wang S, Carter H, McDermott M (2013) Caudate Volume in Offspring at Ultra High Risk for Alcohol Dependence: COMT Val158Met, DRD2, Externalizing Disorders, and Working Memory. Adv J Mol Imaging 1;3(4):43–54

    Article  Google Scholar 

  48. Lohoff FW, Weller AE, Bloch PJ, Nall AH, Ferraro TN et al (2008) Association between the catechol-O-methyltransferase Val158Met polymorphism and cocaine dependence. Neuropsychopharmacology 33(13):3078–3084. doi:10.1038/npp.2008.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ukkola LT, Onkamo P, Raijas P, Karma K, Järvelä I (2009) Musical aptitude is associated with AVPR1A-haplotypes. PLoS One 4(5):e5534. doi:10.1371/journal.pone.0005534

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kanduri C, Kuusi T, Ahvenainen M, Philips AK, Lähdesmäki H et al (2015) The effect of music performance on the transcriptome of professional musicians. Sci Rep 5:9506. doi:10.1038/srep09506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Parkinson C, Wheatley T (2014) Relating anatomical and social connectivity: white matter microstructure predicts emotional empathy. Cereb Cortex 24(3):614–625. doi:10.1093/cercor/bhs347

    Article  PubMed  Google Scholar 

  52. Hu Y, Salmeron BJ, Gu H, Stein EA, Yang Y (2015) Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. JAMA Psychiatry 72(6):584–592. doi:10.1001/jamapsychiatry.2015.1

    Article  PubMed  Google Scholar 

  53. Wijngaarden MA, Veer IM, Rombouts SA, van Buchem MA, Willems van Dijk K et al (2015) Obesity is marked by distinct functional connectivity in brain networks involved in food reward and salience. Behav Brain Res 287:127–134. doi:10.1016/j.bbr.2015.03.016

    Article  CAS  PubMed  Google Scholar 

  54. Reybrouck M, Brattico E (2015) Neuroplasticity beyond sounds: neural adaptations following long-term musical aesthetic experiences. Brain Sci 5(1):69–91. doi:10.3390/brainsci5010069

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fritz TH, Vogt M, Lederer A, Schneider L, Fomicheva E et al (2015) Benefits of listening to a recording of euphoric joint music making in polydrug abusers. Front Hum Neurosci 9:300. doi:10.3389/fnhum.2015.00300

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Marlene Oscar Berman is the recipient of grants from the National Institutes of Health, NIAAA (RO1-AA07112 and K05-AA00219). Marcelo Febo is the recipient of R01DA019946. Kenneth Blum is the recipient of the Life Extension Foundation grant awarded to PATH Foundation NY. We also thank Margaret A. Madigan for her expert editorial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Blum.

Ethics declarations

Conflict of Interest

Kenneth Blum holds the US and Foreign nutrigenomic patents to treat Reward Deficiency Syndrome (RDS) with dopaminergic agonists. Dr. Blum is a member of the scientific advisory board of Dominion Diagnostics, LLC.

Author Contributions

KB wrote the basic manuscript. TS is a psychiatrist and musician who provided the impetus and design for the hypothesis. KD reviewed and developed the second draft of the manuscript. ZD, MOB added important comments and clinical interpretations. CR provided information related to the practice of music from a perspective of a musician. ERB, RDB and ML provided manuscript edits and comments concerning clinical applications and psychiatry.

Funding

This work was supported by the National Institutes of Health grants 1R01NS073884 and 1R21MH073624, awarded to Dr. Rajendra D Badgaiyan. Dr. Marcelo Febo is the recipient of R01DA019946 and R21DA038009. The writing of this paper was supported in part by funds from the National Institutes of Health, NIAAA (RO1-AA07112 and K05-AA00219), and the Medical Research Service of the US Department of Veterans Affairs (MOB). KB and ERB are the recipients of a grant to PATH FOUNDATION NY, by Life Extension Foundation, Ft/Lauderdale, Florida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blum, K., Simpatico, T., Febo, M. et al. Hypothesizing Music Intervention Enhances Brain Functional Connectivity Involving Dopaminergic Recruitment: Common Neuro-correlates to Abusable Drugs. Mol Neurobiol 54, 3753–3758 (2017). https://doi.org/10.1007/s12035-016-9934-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9934-y

Keywords

Navigation