Skip to main content
Log in

Polymorphism of rs3737597 in DISC1 Gene on Chromosome 1q42.2 in sALS Patients: a Chinese Han Population Case-Control Study

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

An Erratum to this article was published on 04 May 2016

Abstract

Although lots of genes have been revealed to relate to sporadic amyotrophic lateral sclerosis (sALS), its genetic mechanisms still need to be further explored. We aimed to search the novel genetic factors of sALS and assess their contribution. We constructed an integrative dataset based on the 3227 subsignificant genes (P value < 0.01) from two sALS-related genome-wide association studies (GWAS) (the US and Irish studies). A significant replication between both studies was confirmed by the gene set enrichment analysis in the integral level (P value < 10−4). Using the pathway overrepresentation analysis, we revealed the 34 shared Gene Ontology (GO) biological processes from the two independent studies (P value < 0.01). Among these pathways, the nervous system developmental pathway (NSD function, GO:0007399) was further supported by the previously reported genes related to sALS (P value = 3.28e−12). Importantly, four of 17 NSD-function-related target genes (disrupted-in-schizophrenia-1 (DISC1), CNTN4, NRXN3, and ERBB4) presented a considerable association with sALS in both studies. To further verify the association between the NSD function target genes and sALS, we preformed a two-stage case–control study based on 500 sALS patients and 500 controls of Chinese Han populations from mainland. A polymorphism of rs3737597 in DISC1 gene involved in the nervous system developmental pathway was closely associated with sALS. The nervous system developmental pathway is a potential pathogenesis of sALS, among them, the polymorphism of rs3737597 in DISC1 might play some roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

sALS:

Sporadic amyotrophic lateral sclerosis

GWAS:

Genome-wide association studies

GO:

Gene Ontology

CHPM:

Chinese Han population from mainland

NSD:

Nervous system development

DISC1:

Disrupted-in-schizophrenia-1

CNTN4:

Contactin 4

NRXN3:

Neurexin 3

OR:

Odds ratio

FPRP:

False-positive report probabilities

References

  1. Chiò A, Traynor BJ, Lombardo F et al (2008) Prevalence of SOD1 mutations in the Italian ALS population. Neurology 70:533–537. doi:10.1212/01.wnl.0000299187.90432.3f

    Article  PubMed  Google Scholar 

  2. Majoor-Krakauer D, Ottman R, Johnson WG et al (1994) Familial aggregation of amyotrophic lateral sclerosis, dementia, and Parkinson’s disease: evidence of shared genetic susceptibility. Neurology 44:1872–1877

    Article  CAS  PubMed  Google Scholar 

  3. Graham AJ, Macdonald AM, Hawkes CH (1997) British motor neuron disease twin study. J Neurol Neurosurg Psychiatry 62:562–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Valdmanis PN, Rouleau GA (2008) Genetics of familial amyotrophic lateral sclerosis. Neurology 70:144–152. doi:10.1212/01.wnl.0000296811.19811.db

    Article  PubMed  Google Scholar 

  5. Renton AE, Chiò A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17:17–23. doi:10.1038/nn.3584

    Article  CAS  PubMed  Google Scholar 

  6. Chiò A, Schymick JC, Restagno G et al (2009) A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis. Hum Mol Genet 18:1524–1532. doi:10.1093/hmg/ddp059

  7. Schymick JC, Scholz SW, Fung HC et al (2007) Genome-wide genotyping in amyotrophic lateral sclerosis and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol 6:322–328

    Article  CAS  PubMed  Google Scholar 

  8. Laaksovirta H, Peuralinna T, Schymick JC et al (2010) Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study. Lancet Neurol 9:978–985. doi:10.1016/S1474-4422(10)70184-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blauw HM, Veldink JH, van Es MA et al (2008) Copy-number variation in sporadic amyotrophic lateral sclerosis: a genome-wide screen. Lancet Neurol 7:319–326. doi:10.1016/S1474-4422(08)70048–6

    Article  CAS  PubMed  Google Scholar 

  10. van Es MA, Van Vught PW, Blauw HM et al (2007) ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study. Lancet Neurol 6:869–877

    Article  PubMed  Google Scholar 

  11. Deng M, Wei L, Zuo X et al (2013) Genome-wide association analyses in Han Chinese identify two new susceptibility loci for amyotrophic lateral sclerosis. Nat Genet 45:697–700. doi:10.1038/ng.2627

    Article  CAS  PubMed  Google Scholar 

  12. Kwee LC, Liu Y, Haynes C et al (2012) A high-density genome-wide association screen of sporadic ALS in US veterans. PLoS One 7:e32768. doi:10.1371/journal.pone.0032768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brambilla P, Esposito F, Lindstrom E et al (2012) Association between DPP6 polymorphism and the risk of progressive multiple sclerosis in Northern and Southern Europeans. Neurosci Lett 530:155–160. doi:10.1016/j.neulet.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  14. Cronin S, Tomik B, Bradley DG et al (2009) Screening for replication of genome-wide SNP associations in sporadic ALS. Eur J Hum Genet 17:213–218. doi:10.1038/ejhg.2008.194

    Article  CAS  PubMed  Google Scholar 

  15. Landers JE, Melki J, Meininger V et al (2009) Reduced expression of the Kinesin-Associated Protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 106:9004–9009. doi:10.1073/pnas.0812937106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koppers M, Groen EJ, van Vught PW et al (2013) Screening for rare variants in the coding region of ALS-associated genes at 9p21.2 and 19p13.3. Neurobiol Aging 34:1518.e5–7. doi:10.1016/j.neurobiolaging.2012.09.018

    Article  CAS  Google Scholar 

  17. Ahmeti KB, Ajroud-Driss S, Al-Chalabi A et al (2013) Age of onset of amyotrophic lateral sclerosis is modulated by a locus on 1p34.1. Neurobiol Aging 34:357.e7–19. doi:10.1016/j.neurobiolaging.2012.07.017

    Article  Google Scholar 

  18. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753. doi:10.1038/nature08494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Edwards YJ, Beecham GW, Scott WK et al (2011) Identifying consensus disease pathways in Parkinson’s disease using an integrative systems biology approach. PLoS One 6:e16917. doi:10.1371/journal.pone.0016917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eleftherohorinou H, Wright V, Hoggart C et al (2009) Pathway analysis of GWAS provides new insights into genetic susceptibility to 3 inflammatory diseases. PLoS One 4:e8068. doi:10.1371/journal.pone.0008068

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xie T, Deng L, Mei P et al (2014) Genome-wide association study combining pathway analysis for typical sporadic amyotrophic lateral sclerosis in Chinese Han populations. Neurobiol Aging 35:1778.e9–e23. doi:10.1016/j.neurobiolaging.2014.01.014

    Article  Google Scholar 

  22. Wang K, Edmondson AC, Li M et al (2011) Pathway-wide association study implicates multiple sterol transport and metabolism genes in HDL cholesterol regulation. Front Genet 2:41. doi:10.3389/fgene.2011.00041

    PubMed  PubMed Central  Google Scholar 

  23. Brooks BR, Miller RG, Swash M et al (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  CAS  PubMed  Google Scholar 

  24. Cronin S, Berger S, Ding J et al (2008) A genome-wide association study of sporadic ALS in a homogenous Irish population. Hum Mol Genet 17:768–774

    Article  CAS  PubMed  Google Scholar 

  25. Xiong Q, Ancona N, Hauser ER et al (2012) Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets. Genome Res 22:386–397. doi:10.1101/gr.124370.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Welter D, MacArthur J, Morales J et al (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42(Database issue):D1001–1006. doi:10.1093/nar/gkt1229

    Article  CAS  PubMed  Google Scholar 

  27. Hamosh A, Scott AF, Amberger JS et al (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33(Database issue):D514–517

    Article  CAS  PubMed  Google Scholar 

  28. Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33(Web Server issue): W741-748

  29. Wang J, Duncan D, Shi Z et al (2013) WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res 41(Web Server issue):W77–83. doi:10.1093/nar/gkt439

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wacholder S, Chanock S, Garcia-Closas M et al (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96:434–442

    Article  PubMed  Google Scholar 

  31. Su L, Shen T, Xie J et al (2015) Association of GWAS-supported variants rs2200733 and rs6843082 on chromosome 4q25 with ischemic stroke in the southern Chinese Han population. J Mol Neurosci 56:585–592. doi:10.1007/s12031-015-0520-y

    Article  CAS  PubMed  Google Scholar 

  32. De Rienzo G, Bishop JA, Mao Y et al (2011) Disc1 regulates both β-catenin-mediated and noncanonical Wnt signaling during vertebrate embryogenesis. FASEB J 25:4184–4197. doi:10.1096/fj.11-186239

    Article  PubMed  PubMed Central  Google Scholar 

  33. Palubinsky AM, Martin JA, McLaughlin B (2012) The role of central nervous system development in late-onset neurodegenerative disorders. Dev Neurosci 34:129–139

    Article  CAS  PubMed  Google Scholar 

  34. Festoff BW, Nelson PG, Brenneman DE (1996) Prevention of activity-dependent neuronal death: vasoactive intestinal polypeptide stimulates astrocytes to secrete the thrombin-inhibiting neurotrophic serpin, protease nexin I. J Neurobiol 30:255–266

    Article  CAS  PubMed  Google Scholar 

  35. Martin LJ (2001) Neuronal cell death in nervous system development, disease, and injury (Review). Int J Mol Med 7:455–478

    CAS  PubMed  Google Scholar 

  36. Sakowski SA, Feldman EL (2012) Insulin-like growth factors in the peripheral nervous system. Endocrinol Metab Clin North Am 41:375–393. doi:10.1016/j.ecl.2012.04.020

    Article  CAS  PubMed  Google Scholar 

  37. Hallengren J, Chen PC, Wilson SM (2013) Neuronal ubiquitin homeostasis. Cell Biochem Biophys 67:67–73. doi:10.1007/s12013-013-9634-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang H, Wu M, Zhan C et al (2012) Neurofilament proteins in axonal regeneration and neurodegenerative diseases. Neural Regen Res 7:620–626. doi:10.3969/j.issn.1673-5374.2012.08.010

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kang E, Burdick KE, Kim JY et al (2011) Interaction between FEZ1 and DISC1 in regulation of neuronal development and risk for schizophrenia. Neuron 72:559–571. doi:10.1016/j.neuron.2011.09.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yerabham AS, Weiergräber OH, Bradshaw NJ et al (2013) Revisiting disrupted-in- schizophrenia 1 as a scaffold protein. Biol Chem 394:1425–1437. doi:10.1515/hsz-2013-0178

    Article  CAS  PubMed  Google Scholar 

  41. Jacobsen KK, Halmøy A, Sánchez-Mora C et al (2013) DISC1 in adult ADHD patients: an association study in two European samples. Am J Med Genet B Neuropsychiatr Genet 162B:227–234. doi:10.1002/ajmg.b.32136

    Article  PubMed  Google Scholar 

  42. Lill CM, Abel O, Bertram L et al (2011) Keeping up with genetic discoveries in amyotrophic lateral sclerosis: the ALSoD and ALSGene databases. Amyotroph Lateral Scler 12:238–249. doi:10.3109/17482968.2011.584629

    Article  PubMed  Google Scholar 

  43. Fogh I, Ratti A, Gellera C et al (2014) A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Hum Mol Genet 23:2220–2231. doi:10.1093/hmg/ddt587

    Article  CAS  PubMed  Google Scholar 

  44. Millar JK, Wilson-Annan JC, Anderson S et al (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 9:1415–1423

    Article  CAS  PubMed  Google Scholar 

  45. Lubow IW, Robert E (2010) Latent Inhibition: Neuroscience, Applications and Schizophrenia. Cambridge University Press, Cambridge. ISBN 0-521-51733-8

    Book  Google Scholar 

  46. Brandon NJ, Millar JK, Korth C et al (2009) Understanding the role of DISC1 in psychiatric disease and during normal development. J Neurosci 29:12768–12775. doi:10.1523/JNEUROSCI.3355–09.2009

    Article  CAS  PubMed  Google Scholar 

  47. Hennah W, Porteous D (2009) The DISC1 pathway modulates expression of neurodevelopmental, synaptogenic and sensory perception genes. PLoS One 4:e4906. doi:10.1371/journal.pone.0004906

    Article  PubMed  PubMed Central  Google Scholar 

  48. Le Strat Y, Ramoz N, Gorwood P (2009) The role of genes involved in neuroplasticity and neurogenesis in the observation of a gene-environment interaction (GxE) in schizophrenia. Curr Mol Med 9:506–518

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the sALS patients who generously contributed their time and materials for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiong Zhang or Renshi Xu.

Ethics declarations

Authorship

R.X., L.D., and X.Z. conceived and designed the experiments. L.D., L.H., J.Z., X.T., Z.C., G.L., X.F., and J.X. performed the experiments. R.X., L.H., and L.D. analyzed the data. X.Z. contributed partial materials. R.X. and L.D. wrote the paper.

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

The work was funded by grants from the National Natural Science Foundation of China (grant numbers 30560042, 81160161, 81360198, 81260021, 81200631, and 30871384), the Education Department of Jiangxi Province (grant numbers [2005(183)], GJJ13091, 20132BAB205060, 20133BCB23007, and cx2015183), Guangdong Provincial Science and Technology Project Foundation (grant number 2012B031800410), and the Jiangxi Provincial Department of Science and Technology (grant number [2014]-47), China.

Additional information

Libin Deng and Liwei Hou were joint first authors.

Libin Deng, Liwei Hou and Jie Zhang contributed equally to this work.

An erratum to this article is available at http://dx.doi.org/10.1007/s12035-016-9897-z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Hou, L., Zhang, J. et al. Polymorphism of rs3737597 in DISC1 Gene on Chromosome 1q42.2 in sALS Patients: a Chinese Han Population Case-Control Study. Mol Neurobiol 54, 3162–3179 (2017). https://doi.org/10.1007/s12035-016-9869-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9869-3

Keywords

Navigation