Skip to main content

Advertisement

Log in

Glucocorticoid-Induced Leucine Zipper in Central Nervous System Health and Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The central nervous system (CNS) is a large network of intercommunicating cells that function to maintain tissue health and homeostasis. Considerable evidence suggests that glucocorticoids exert both neuroprotective and neurodegenerative effects on the CNS. Glucocorticoids act by binding two related receptors in the cytoplasm, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). The glucocorticoid receptor complex mediates cellular responses by transactivating target genes and by protein: protein interactions. The paradoxical effects of glucocorticoids on neuronal survival and death have been attributed to the concentration and the ratio of mineralocorticoid to glucocorticoid receptor activation. Glucocorticoid-induced leucine zipper (GILZ) is a recently identified protein transcriptionally upregulated by glucocorticoids. Constitutively, expressed in many tissues including brain, GILZ mediates many of the actions of glucocorticoids. It mimics the anti-inflammatory and anti-proliferative effects of glucocorticoids but exerts differential effects on stem cell differentiation and lineage development. Recent experimental data on the effects of GILZ following induced stress or trauma suggest potential roles in CNS diseases. Here, we provide a short overview of the role of GILZ in CNS health and discuss three potential rationales for the role of GILZ in Alzheimer’s disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Abraham IM, Meerlo P, Luiten PG (2006) Concentration dependent actions of glucocorticoids on neuronal viability and survival. Dose Response 4(1):38–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brunson KL, Chen Y, Avishai-Eliner S, Baram TZ (2003) Stress and the developing hippocampus: a double-edged sword? Mol Neurobiol 27(2):121–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Madan AP, DeFranco DB (1993) Bidirectional transport of glucocorticoid receptors across the nuclear envelope. Proc Natl Acad Sci U S A 90(8):3588–3592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brureau A, Zussy C, Delair B, Ogier C, Ixart G, Maurice T, Givalois L (2013) Deregulation of hypothalamic-pituitary-adrenal axis functions in an Alzheimer’s disease rat model. Neurobiol Aging 34(5):1426–1439

    Article  CAS  PubMed  Google Scholar 

  5. Grossmann C, Scholz T, Rochel M, Bumke-Vogt C, Oelkers W, Pfeiffer AF, Diederich S et al (2004) Transactivation via the human glucocorticoid and mineralocorticoid receptor by therapeutically used steroids in CV-1 cells: a comparison of their glucocorticoid and mineralocorticoid properties. Eur J Endocrinol 151(3):397–406

    Article  CAS  PubMed  Google Scholar 

  6. Rupprecht R, Reul JM, van Steensel B, Spengler D, Soder M, Berning B, Holsboer F, Damm K (1993) Pharmacological and functional characterization of human mineralocorticoid and glucocorticoid receptor ligands. Eur J Pharmacol 247(2):145–154

    Article  CAS  PubMed  Google Scholar 

  7. Newton R (2000) Molecular mechanisms of glucocorticoid action: what is important? Thorax 55(7):603–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ogita K, Sugiyama C, Acosta GB, Kuramoto N, Shuto M, Yoneyama M, Nakamura Y, Shiba T et al (2012) Opposing roles of glucocorticoid receptor and mineralocorticoid receptor in trimethyltin-induced cytotoxicity in the mouse hippocampus. Neurosci Lett 511(2):116–119

    Article  CAS  PubMed  Google Scholar 

  9. De Kloet ER, Reul JM (1987) Feedback action and tonic influence of corticosteroids on brain function: a concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology 12(2):83–105

    Article  CAS  PubMed  Google Scholar 

  10. Le Menuet D, Lombes M (2014) The neuronal mineralocorticoid receptor: from cell survival to neurogenesis. Steroids 91:11–19

    Article  CAS  PubMed  Google Scholar 

  11. ter Heegde F, De Rijk RH, Vinkers CH (2015) The brain mineralocorticoid receptor and stress resilience. Psychoneuroendocrinology 52:92–110

    Article  PubMed  Google Scholar 

  12. Chen DW, Lynch JT, Demonacos C, Krstic-Demonacos M, Schwartz JM (2010) Quantitative analysis and modeling of glucocorticoid-controlled gene expression. Pharmacogenomics 11(11):1545–1560

    Article  CAS  PubMed  Google Scholar 

  13. Chantong B, Kratschmar DV, Nashev LG, Balazs Z, Odermatt A (2012) Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells. J Neuroinflammation 9:260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Giubilei F, Patacchioli FR, Antonini G, Sepe Monti M, Tisei P, Bastianello S, Monnazzi P, Angelucci L (2001) Altered circadian cortisol secretion in Alzheimer’s disease: clinical and neuroradiological aspects. J Neurosci Res 66(2):262–265

    Article  CAS  PubMed  Google Scholar 

  15. Huang CW, Lui CC, Chang WN, Lu CH, Wang YL, Chang CC (2009) Elevated basal cortisol level predicts lower hippocampal volume and cognitive decline in Alzheimer’s disease. J Clin Neurosci 16(10):1283–1286

    Article  CAS  PubMed  Google Scholar 

  16. Weiner MF, Vobach S, Olsson K, Svetlik D, Risser RC (1997) Cortisol secretion and Alzheimer’s disease progression. Biol Psychiatry 42(11):1030–1038

    Article  CAS  PubMed  Google Scholar 

  17. Abraham I, Harkany T, Horvath KM, Veenema AH, Penke B, Nyakas C, Luiten PG (2000) Chronic corticosterone administration dose-dependently modulates Abeta(1-42)- and NMDA-induced neurodegeneration in rat magnocellular nucleus basalis. J Neuroendocrinol 12(6):486–494

    Article  CAS  PubMed  Google Scholar 

  18. Baglietto-Vargas D, Chen Y, Suh D, Ager RR, Rodriguez-Ortiz CJ, Medeiros R, Myczek K, Green KN et al (2015) Short-term modern life-like stress exacerbates Abeta-pathology and synapse loss in 3xTg-AD mice. J Neurochem 134(5):915–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li WZ, Li WP, Yao YY, Zhang W, Yin YY, Wu GC, Gong HL (2010) Glucocorticoids increase impairments in learning and memory due to elevated amyloid precursor protein expression and neuronal apoptosis in 12-month-old mice. Eur J Pharmacol 628(1–3):108–115

    Article  CAS  PubMed  Google Scholar 

  20. Green KN, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM (2006) Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci 26(35):9047–9056

    Article  CAS  PubMed  Google Scholar 

  21. Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21(1):172–188

    Article  PubMed  Google Scholar 

  22. Swomley AM, Forster S, Keeney JT, Triplett J, Zhang Z, Sultana R, Butterfield DA (2014) Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies. Biochim Biophys Acta 1842(8):1248–1257

    Article  CAS  PubMed  Google Scholar 

  23. Rothman SM, Mattson MP (2010) Adverse stress, hippocampal networks, and Alzheimer’s disease. Neruomol Med 12(1):56–70

    Article  CAS  Google Scholar 

  24. Sotiropoulos I, Cerqueira JJ, Catania C, Takashima A, Sousa N, Almeida OF (2008) Stress and glucocorticoid footprints in the brain—the path from depression to Alzheimer’s disease. Neurosci Biobehav Rev 32(6):1161–1173

    Article  CAS  PubMed  Google Scholar 

  25. Cannarile L, Zollo O, D'Adamio F, Ayroldi E, Marchetti C, Tabilio A, Bruscoli S, Riccardi C (2001) Cloning, chromosomal assignment and tissue distribution of human GILZ, a glucocorticoid hormone-induced gene. Cell Death Differ 8(2):201–203

    Article  CAS  PubMed  Google Scholar 

  26. Di Marco B, Massetti M, Bruscoli S, Macchiarulo A, Di Virgilio R, Velardi E, Donato V, Migliorati G et al (2007) Glucocorticoid-induced leucine zipper (GILZ)/NF-kappaB interaction: role of GILZ homo-dimerization and C-terminal domain. Nucleic Acids Res 35(2):517–528

    Article  CAS  PubMed  Google Scholar 

  27. Ayyar VS, Almon RR, Jusko WJ, DuBois DC (2015) Quantitative tissue-specific dynamics of in vivo GILZ mRNA expression and regulation by endogenous and exogenous glucocorticoids. Physiol Rep 3(6):e12382

    Article  PubMed  PubMed Central  Google Scholar 

  28. Soundararajan R, Wang J, Melters D, Pearce D (2007) Differential activities of glucocorticoid-induced leucine zipper protein isoforms. J Biol Chem 282(50):36303–36313

    Article  CAS  PubMed  Google Scholar 

  29. Wohleb ES, Hanke ML, Corona AW, Powell ND, Stiner LM, Bailey MT, Nelson RJ, Godbout JP et al (2011) Beta-adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci 31(17):6277–6288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yachi K, Inoue K, Tanaka H, Yoshikawa H, Tohyama M (2007) Localization of glucocorticoid-induced leucine zipper (GILZ) expressing neurons in the central nervous system and its relationship to the stress response. Brain Res 1159:141–147

    Article  CAS  PubMed  Google Scholar 

  31. Berrebi D, Bruscoli S, Cohen N, Foussat A, Migliorati G, Bouchet-Delbos L, Maillot MC, Portier A et al (2003) Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood 101(2):729–738

    Article  CAS  PubMed  Google Scholar 

  32. Shi XM, Blair HC, Yang X, McDonald JM, Cao X (2000) Tandem repeat of C/EBP binding sites mediates PPARgamma2 gene transcription in glucocorticoid-induced adipocyte differentiation. J Cell Biochem 76(3):518–527

    Article  CAS  PubMed  Google Scholar 

  33. Ayroldi E, Riccardi C (2009) Glucocorticoid-induced leucine zipper (GILZ): a new important mediator of glucocorticoid action. FASEB J 23(11):3649–3658

    Article  CAS  PubMed  Google Scholar 

  34. Fan H, Morand EF (2012) Targeting the side effects of steroid therapy in autoimmune diseases: the role of GILZ. Discov Med 13(69):123–133

    PubMed  Google Scholar 

  35. Atwood CS, Obrenovich ME, Liu T, Chan H, Perry G, Smith MA, Martins RN (2003) Amyloid-beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-beta. Brain Res Brain Res Rev 43(1):1–16

    Article  CAS  PubMed  Google Scholar 

  36. Hu J, Akama KT, Krafft GA, Chromy BA, Van Eldik LJ (1998) Amyloid-beta peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Res 785(2):195–206

    Article  CAS  PubMed  Google Scholar 

  37. Jimenez S, Torres M, Vizuete M, Sanchez-Varo R, Sanchez-Mejias E, Trujillo-Estrada L, Carmona-Cuenca I, Caballero C et al (2011) Age-dependent accumulation of soluble amyloid beta (Abeta) oligomers reverses the neuroprotective effect of soluble amyloid precursor protein-alpha (sAPP(alpha)) by modulating phosphatidylinositol 3-kinase (PI3K)/Akt-GSK-3beta pathway in Alzheimer mouse model. J Biol Chem 286(21):18414–18425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhaskar K, Miller M, Chludzinski A, Herrup K, Zagorski M, Lamb BT (2009) The PI3K-Akt-mTOR pathway regulates Abeta oligomer induced neuronal cell cycle events. Mol Neurodegener 4:14

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jiao J, Xue B, Zhang L, Gong Y, Li K, Wang H, Jing L, Xie J et al (2008) Triptolide inhibits amyloid-beta1-42-induced TNF-alpha and IL-1beta production in cultured rat microglia. J Neuroimmunol 205(1–2):32–36

    Article  CAS  PubMed  Google Scholar 

  40. Huang HJ, Liang KC, Chang YY, Ke HC, Lin JY, Hsieh-Li HM (2010) The interaction between acute oligomer Abeta(1-40) and stress severely impaired spatial learning and memory. Neurobiol Learn Mem 93(1):8–18

    Article  CAS  PubMed  Google Scholar 

  41. Almeida OF, Conde GL, Crochemore C, Demeneix BA, Fischer D, Hassan AH, Meyer M, Holsboer F et al (2000) Subtle shifts in the ratio between pro- and antiapoptotic molecules after activation of corticosteroid receptors decide neuronal fate. FASEB J 14(5):779–790

    CAS  PubMed  Google Scholar 

  42. Lai M, Seckl J, Macleod M (2005) Overexpression of the mineralocorticoid receptor protects against injury in PC12 cells. Brain Res Mol Brain Res 135(1–2):276–279

    Article  CAS  PubMed  Google Scholar 

  43. Murphy EK, Spencer RL, Sipe KJ, Herman JP (2002) Decrements in nuclear glucocorticoid receptor (GR) protein levels and DNA binding in aged rat hippocampus. Endocrinology 143(4):1362–1370

    Article  CAS  PubMed  Google Scholar 

  44. Sola S, Amaral JD, Borralho PM, Ramalho RM, Castro RE, Aranha MM, Steer CJ, Rodrigues CM (2006) Functional modulation of nuclear steroid receptors by tauroursodeoxycholic acid reduces amyloid beta-peptide-induced apoptosis. Mol Endocrinol 20(10):2292–2303

    Article  CAS  PubMed  Google Scholar 

  45. Bergann T, Fromm A, Borden SA, Fromm M, Schulzke JD (2011) Glucocorticoid receptor is indispensable for physiological responses to aldosterone in epithelial Na + channel induction via the mineralocorticoid receptor in a human colonic cell line. Eur J Cell Biol 90(5):432–439

    Article  CAS  PubMed  Google Scholar 

  46. Aguilar D, Strom J, Chen QM (2014) Glucocorticoid induced leucine zipper inhibits apoptosis of cardiomyocytes by doxorubicin. Toxicol Appl Pharmacol 276(1):55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Delfino DV, Agostini M, Spinicelli S, Vito P, Riccardi C (2004) Decrease of Bcl-xL and augmentation of thymocyte apoptosis in GILZ overexpressing transgenic mice. Blood 104(13):4134–4141

    Article  CAS  PubMed  Google Scholar 

  48. Kervoelen C, Menoret E, Gomez-Bougie P, Bataille R, Godon C, Marionneau-Lambot S, Moreau P, Pellat-Deceunynck C et al (2015) Dexamethasone-induced cell death is restricted to specific molecular subgroups of multiple myeloma. Oncotarget 6(29):26922–26934

    Article  PubMed  PubMed Central  Google Scholar 

  49. Grugan KD, Ma C, Singhal S, Krett NL, Rosen ST (2008) Dual regulation of glucocorticoid-induced leucine zipper (GILZ) by the glucocorticoid receptor and the PI3-kinase/AKT pathways in multiple myeloma. J Steroid Biochem Mol Biol 110(3–5):244–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gupta V, Awasthi N, Wagner BJ (2007) Specific activation of the glucocorticoid receptor and modulation of signal transduction pathways in human lens epithelial cells. Invest Ophthalmol Vis Sci 48(4):1724–1734

    Article  PubMed  PubMed Central  Google Scholar 

  51. Faigle R, Song H (2013) Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta 1830(2):2435–2448

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Hu W 2012 NFkappaB signaling regulates embryonic and adult neurogenesis. Front Biol (Beijing), 7(4)

  53. Saaltink DJ, Vreugdenhil E (2014) Stress, glucocorticoid receptors, and adult neurogenesis: a balance between excitation and inhibition? Cellular and molecular life sciences : CMLS 71(13):2499–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fischer AK, von Rosenstiel P, Fuchs E, Goula D, Almeida OF, Czeh B (2002) The prototypic mineralocorticoid receptor agonist aldosterone influences neurogenesis in the dentate gyrus of the adrenalectomized rat. Brain Res 947(2):290–293

    Article  CAS  PubMed  Google Scholar 

  55. Gesmundo I, Villanova T, Gargantini E, Arvat E, Ghigo E, Granata R (2016) The mineralocorticoid agonist fludrocortisone promotes survival and proliferation of adult hippocampal progenitors. Front Endocrinol (Lausanne) 7:66

    Google Scholar 

  56. Bortolotto V, Cuccurazzu B, Canonico PL, Grilli M (2014) NF-kappaB mediated regulation of adult hippocampal neurogenesis: relevance to mood disorders and antidepressant activity. Biomed Res Int 2014:612798

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pizzi M, Goffi F, Boroni F, Benarese M, Perkins SE, Liou HC, Spano P (2002) Opposing roles for NF-kappa B/Rel factors p65 and c-Rel in the modulation of neuron survival elicited by glutamate and interleukin-1beta. J Biol Chem 277(23):20717–20723

    Article  CAS  PubMed  Google Scholar 

  58. Pizzi M, Sarnico I, Boroni F, Benarese M, Steimberg N, Mazzoleni G, Dietz GP, Bahr M et al (2005) NF-kappaB factor c-Rel mediates neuroprotection elicited by mGlu5 receptor agonists against amyloid beta-peptide toxicity. Cell Death Differ 12(7):761–772

    Article  CAS  PubMed  Google Scholar 

  59. Srinivasan M, Lahiri DK (2015) Significance of NF-kappaB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer’s disease and multiple sclerosis. Expert Opin Ther Targets 19(4):471–487

    Article  CAS  PubMed  Google Scholar 

  60. Kim JB, Ju JY, Kim JH, Kim TY, Yang BH, Lee YS, Son H (2004) Dexamethasone inhibits proliferation of adult hippocampal neurogenesis in vivo and in vitro. Brain Res 1027(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  61. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 100(23):13632–13637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang Y, Shen GL, Shangguan LJ, Yu Y, He ML (2015) Involvement of NFkappaB signaling in mediating the effects of GRK5 on neural stem cells. Brain Res 1608:31–39

    Article  CAS  PubMed  Google Scholar 

  63. Decourt B, Lahiri, DK, Sabbagh, MN 2016 Targeting tumor necrosis factor alpha for Alzheimer’s disease. Curr Alzheimer Res

  64. Koo JW, Russo SJ, Ferguson D, Nestler EJ, Duman RS (2010) Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci U S A 107(6):2669–2674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McKay LI, Cidlowski JA (1999) Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa B and steroid receptor-signaling pathways. Endocr Rev 20(4):435–459

    CAS  PubMed  Google Scholar 

  66. Shi X, Shi W, Li Q, Song B, Wan M, Bai S, Cao X (2003) A glucocorticoid-induced leucine-zipper protein, GILZ, inhibits adipogenesis of mesenchymal cells. EMBO Rep 4(4):374–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang W, Yang N, Shi XM (2008) Regulation of mesenchymal stem cell osteogenic differentiation by glucocorticoid-induced leucine zipper (GILZ). J Biol Chem 283(8):4723–4729

    Article  CAS  PubMed  Google Scholar 

  68. Morales-Garcia JA, Luna-Medina R, Alfaro-Cervello C, Cortes-Canteli M, Santos A, Garcia-Verdugo JM, Perez-Castillo A (2011) Peroxisome proliferator-activated receptor gamma ligands regulate neural stem cell proliferation and differentiation in vitro and in vivo. Glia 59(2):293–307

    Article  PubMed  Google Scholar 

  69. Pulido-Salgado M, Vidal-Taboada JM, Saura J (2015) C/EBPbeta and C/EBPdelta transcription factors: basic biology and roles in the CNS. Prog Neurobiol 132:1–33

    Article  CAS  PubMed  Google Scholar 

  70. Ko CY, Chang WC, Wang JM (2015) Biological roles of CCAAT/enhancer-binding protein delta during inflammation. J Biomed Sci 22:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu Z, Bucher NL, Farmer SR (1996) Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol 16(8):4128–4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ramos RA, Nishio Y, Maiyar AC, Simon KE, Ridder CC, Ge Y, Firestone GL (1996) Glucocorticoid-stimulated CCAAT/enhancer-binding protein alpha expression is required for steroid-induced G1 cell cycle arrest of minimal-deviation rat hepatoma cells. Mol Cell Biol 16(10):5288–5301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mandrekar-Colucci S, Sauerbeck A, Popovich PG, McTigue DM (2013) PPAR agonists as therapeutics for CNS trauma and neurological diseases. ASN Neuro 5(5):e00129

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pan G, Cao J, Yang N, Ding K, Fan C, Xiong WC, Hamrick M, Isales CM et al (2014) Role of glucocorticoid-induced leucine zipper (GILZ) in bone acquisition. J Biol Chem 289(28):19373–19382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Boeckx C, Benitez-Burraco A (2015) Osteogenesis and neurogenesis: a robust link also for language evolution. Front Cell Neurosci 9:291

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jeong JH, Jin JS, Kim HN, Kang SM, Liu JC, Lengner CJ, Otto F, Mundlos S et al (2008) Expression of Runx2 transcription factor in non-skeletal tissues, sperm and brain. J Cell Physiol 217(2):511–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vladimirova V, Waha A, Luckerath K, Pesheva P, Probstmeier R (2008) Runx2 is expressed in human glioma cells and mediates the expression of galectin-3. J Neurosci Res 86(11):2450–2461

    Article  CAS  PubMed  Google Scholar 

  78. Yao Z, Li Y, Yin X, Dong Y, Xing L, Boyce BF (2014) NF-kappaB RelB negatively regulates osteoblast differentiation and bone formation. J Bone Miner Res 29(4):866–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T et al (2015) Neuroinflammation in Alzheimer's disease. Lancet Neurol 14(4):388–405

    Article  CAS  PubMed  Google Scholar 

  80. Latta CH, Brothers HM, Wilcock DM (2015) Neuroinflammation in Alzheimer’s disease: a source of heterogeneity and target for personalized therapy. Neuroscience 302:103–111

    Article  CAS  PubMed  Google Scholar 

  81. Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29(8):357–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bales KR, Du Y, Holtzman D, Cordell B, Paul SM (2000) Neuroinflammation and Alzheimer’s disease: critical roles for cytokine/Abeta-induced glial activation, NF-kappaB, and apolipoprotein E. Neurobiol Aging 21(3):427–432 discussion 451–423

    Article  CAS  PubMed  Google Scholar 

  83. Clementi ME, Pezzotti M, Orsini F, Sampaolese B, Mezzogori D, Grassi C, Giardina B, Misiti F (2006) Alzheimer’s amyloid beta-peptide (1-42) induces cell death in human neuroblastoma via bax/bcl-2 ratio increase: an intriguing role for methionine 35. Biochem Biophys Res Commun 342(1):206–213

    Article  CAS  PubMed  Google Scholar 

  84. Kitamura Y, Shimohama S, Kamoshima W, Ota T, Matsuoka Y, Nomura Y, Smith MA, Perry G et al (1998) Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer’s disease. Brain Res 780(2):260–269

    Article  CAS  PubMed  Google Scholar 

  85. MacGibbon GA, Lawlor PA, Sirimanne ES, Walton MR, Connor B, Young D, Williams C, Gluckman P et al (1997) Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer’s disease hippocampus. Brain Res 750(1–2):223–234

    Article  CAS  PubMed  Google Scholar 

  86. Dursun E, Gezen-Ak D, Hanagasi H, Bilgic B, Lohmann E, Ertan S, Atasoy IL, Alaylioglu M et al (2015) The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer’s disease, mild cognitive impairment or Parkinson’s disease. J Neuroimmunol 283:50–57

    Article  CAS  PubMed  Google Scholar 

  87. Tischner D, Reichardt HM (2007) Glucocorticoids in the control of neuroinflammation. Mol Cell Endocrinol 275(1–2):62–70

    Article  CAS  PubMed  Google Scholar 

  88. Riccardi C (2010) GILZ (glucocorticoid-induced leucine zipper), a mediator of the anti-inflammatory and immunosuppressive activity of glucocorticoids. Ann Ig 22(1 Suppl 1):53–59

    CAS  PubMed  Google Scholar 

  89. Srinivasan M, Janardhanam S (2011) Novel p65 binding glucocorticoid-induced leucine zipper peptide suppresses experimental autoimmune encephalomyelitis. J Biol Chem 286(52):44799–44810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cannarile L, Cuzzocrea S, Santucci L, Agostini M, Mazzon E, Esposito E, Muia C, Coppo M et al (2009) Glucocorticoid-induced leucine zipper is protective in Th1-mediated models of colitis. Gastroenterology 136(2):530–541

    Article  CAS  PubMed  Google Scholar 

  91. Mazzon E, Bruscoli S, Galuppo M, Biagioli M, Sorcini D, Bereshchenko O, Fiorucci C, Migliorati G et al (2014) Glucocorticoid-induced leucine zipper (GILZ) controls inflammation and tissue damage after spinal cord injury. CNS Neurosci Ther 20(11):973–981

    Article  CAS  PubMed  Google Scholar 

  92. Mittelstadt PR, Ashwell JD (2001) Inhibition of AP-1 by the glucocorticoid-inducible protein GILZ. J Biol Chem 276(31):29603–29610

    Article  CAS  PubMed  Google Scholar 

  93. Srinivasan M 2014 Glucocoriticoid induced leucine zipper as therapeutic agents in multiple sclerosis. In: Patent application publication. Edited by office USPI

  94. Srinivasan M, Blackburn C, Lahiri DK (2014) Functional characterization of a competitive peptide antagonist of p65 in human macrophage-like cells suggests therapeutic potential for chronic inflammation. Drug Des Devel Ther 8:2409–2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank Bryan Maloney for critically reading of the manuscript. Investigator support for the study was provided by the following sources: NIA R01-AG051086, and Indiana Clinical & Translational Sciences Institute (ICTSI) and ISDH Spinal Cord and Brain Injury Board Fund (D.K. Lahiri), and 1R41AG053117-01 (MS and DKL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mythily Srinivasan or Debomoy K. Lahiri.

Ethics declarations

Declaration of Interests

DKL serves on scientific advisory boards for QR Pharma, Yuma Therapeutics, Entia Biosciences, and Provaidya LLC and is a member of the Drug Discovery and Therapy World Congress. Editor in Chief, Current Alzheimer Research (Bentham Science).

Financial Disclosures

Stock options, QR Pharma; patent involving AIT-082, Memantine. Patents pending on acamprosate and patent involving GILZ analogs.

MS is the co-founder of the Provaidya LLC, Indianapolis, USA.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, M., Lahiri, D.K. Glucocorticoid-Induced Leucine Zipper in Central Nervous System Health and Disease. Mol Neurobiol 54, 8063–8070 (2017). https://doi.org/10.1007/s12035-016-0277-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0277-5

Keywords

Navigation