Skip to main content

Advertisement

Log in

Cholinergic Oculomotor Nucleus Activity Is Induced by REM Sleep Deprivation Negatively Impacting on Cognition

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Several efforts have been made to understand the involvement of rapid eye movement (REM) sleep for cognitive processes. Consolidation or retention of recognition memories is severely disrupted by REM sleep deprivation (REMSD). In this regard, pedunculopontine tegmental nucleus (PPT) and other brainstem nuclei, such as pontine nucleus (Pn) and oculomotor nucleus (OCM), appear to be candidates to take part in this REM sleep circuitry with potential involvement in cognition. Therefore, the objective of this study was to investigate a possible association between the performance of Wistar rats in a declarative memory and PPT, Pn, and OCM activities after different periods of REMSD. We examined c-Fos and choline acetyltransferase (ChaT) expressions as indicators of neuronal activity as well as a familiarity-based memory test. The animals were distributed in groups: control, REMSD, and sleep rebound (REB). At the end of the different REMSD (24, 48, 72, and 96 h) and REB (24 h) time points, the rats were immediately tested in the object recognition test and then the brains were collected. Results indicated that OCM neurons presented an increased activity, due to ChaT-labeling associated with REMSD that negatively correlated (r = −0.32) with the cognitive performance. This suggests the existence of a cholinergic compensatory mechanism within the OCM during REMSD. We also showed that 24 h of REMSD impacted similarly in memory, compared to longer periods of REMSD. These data extend the notion that REM sleep is influenced by areas other than PPT, i.e., Pn and OCM, which could be key players in both sleep processes and cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ChaT:

Choline acetyltransferase

DI:

Discrimination index

OCM:

Oculomotor nucleus

PD:

Parkinson’s disease

PPT:

Pedunculopontine tegmental nucleus

Pn:

Pontine nucleus

REM:

Rapid eye movement

REMSD:

REM sleep deprivation

REB:

Rebound

References

  1. Ribeiro S, Nicolelis MA (2004) Reverberation, storage, and postsynaptic propagation of memories during sleep. Learn Mem 11(6):686–696

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stickgold R (2013) Parsing the role of sleep in memory processing. Curr Opin Neurobiol 23(5):847–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Louie K, Wilson MA (2001) Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29(1):145–156

    Article  CAS  PubMed  Google Scholar 

  4. Dos Santos AC, Castro MA, Jose EA, Delattre AM, Dombrowski PA, Da Cunha C, Ferraz AC, Lima MM (2013) REM sleep deprivation generates cognitive and neurochemical disruptions in the intranigral rotenone model of Parkinson’s disease. J Neurosci Res 91:1508–1516

    Article  CAS  PubMed  Google Scholar 

  5. Proenca MB, Dombrowski PA, Da Cunha C, Fischer L, Ferraz AC, Lima MM (2014) Dopaminergic D2 receptor is a key player in the substantia nigra pars compacta neuronal activation mediated by REM sleep deprivation. Neuropharmacology 76(Pt A):118–126

    Article  CAS  PubMed  Google Scholar 

  6. Morris RG (2001) Episodic-like memory in animals: psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philos Trans R Soc Lond Ser B Biol Sci 356(1413):1453–1465

    Article  CAS  Google Scholar 

  7. Dere E, Silva MA, Huston JP (2004) Higher order memories for objects encountered in different spatio-temporal contexts in mice: evidence for episodic memory. Rev Neurosci 15(4):231–240

    Article  PubMed  Google Scholar 

  8. Souchay C, Isingrini M, Gil R (2006) Metamemory monitoring and Parkinson’s disease. J Clin Exp Neuropsychol 28(4):618–630

    Article  PubMed  Google Scholar 

  9. McCarley RW (2007) Neurobiology of REM and NREM sleep. Sleep Med 8(4):302–330

    Article  PubMed  Google Scholar 

  10. Van Dort CJ, Zachs DP, Kenny JD, Zheng S, Goldblum RR, Gelwan NA, Ramos DM, Nolan MA, Wang K, Weng FJ, Lin Y, Wilson MA, Brown EN (2015) Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci U S A 112(2):584–589

    Article  CAS  PubMed  Google Scholar 

  11. Sakai K, Koyama Y (1996) Are there cholinergic and non-cholinergic paradoxical sleep-on neurones in the pons? Neuroreport 7(15–17):2449–2453

    Article  CAS  PubMed  Google Scholar 

  12. Lima MM (2013) Sleep disturbances in Parkinson’s disease: the contribution of dopamine in REM sleep regulation. Sleep Med Rev 17(5):367–375

    Article  PubMed  Google Scholar 

  13. Nieto-Gonzalez JL, Carrascal L, Nunez-Abades P, Torres B (2009) Muscarinic modulation of recruitment threshold and firing rate in rat oculomotor nucleus motoneurons. J Neurophysiol 101(1):100–111

    Article  CAS  PubMed  Google Scholar 

  14. Garzon M, De Andres I, Reinoso-Suarez F (1998) Sleep patterns after carbachol delivery in the ventral oral pontine tegmentum of the cat. Neuroscience 83(4):1137–1144

    Article  CAS  PubMed  Google Scholar 

  15. Reinoso-Suarez F, De Andres I, Rodrigo-Angulo ML, Rodriguez-Veiga E (1994) Location and anatomical connections of a paradoxical sleep induction site in the cat ventral pontine tegmentum. Eur J Neurosci 6(12):1829–1836

    Article  CAS  PubMed  Google Scholar 

  16. Fung SJ, Yamuy J, Xi MC, Engelhardt JK, Morales FR, Chase MH (2000) Changes in electrophysiological properties of cat hypoglossal motoneurons during carbachol-induced motor inhibition. Brain Res 885(2):262–272

    Article  CAS  PubMed  Google Scholar 

  17. Pinto L, Goard MJ, Estandian D, Xu M, Kwan AC, Lee SH, Harrison TC, Feng G, Dan Y (2013) Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat Neurosci 16(12):1857–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fu Y, Tucciarone JM, Espinosa JS, Sheng N, Darcy DP, Nicoll RA, Huang ZJ, Stryker MP (2014) A cortical circuit for gain control by behavioral state. Cell 156(6):1139–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harrison TC, Pinto L, Brock JR, Dan Y (2016) Calcium imaging of basal forebrain activity during innate and learned behaviors. Front Neural Circ 10:36

    Google Scholar 

  20. Lima MMS, Andersen ML, Reksidler AB, Silva A, Zager A, Zanata SM, Vital MA, Tufik S (2008) Blockage of dopaminergic D(2) receptors produces decrease of REM but not of slow wave sleep in rats after REM sleep deprivation. Behav Brain Res 188(2):406–411

    Article  CAS  PubMed  Google Scholar 

  21. Machado RB, Hipolide DC, Benedito-Silva AA, Tufik S (2004) Sleep deprivation induced by the modified multiple platform technique: quantification of sleep loss and recovery. Brain Res 1004(1–2):45–51

    Article  CAS  PubMed  Google Scholar 

  22. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31(1):47–59

    Article  CAS  PubMed  Google Scholar 

  23. Ennaceur A, Michalikova S, Bradford A, Ahmed S (2005) Detailed analysis of the behavior of Lister and Wistar rats in anxiety, object recognition and object location tasks. Behav Brain Res 159(2):247–266

    Article  CAS  PubMed  Google Scholar 

  24. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Academic Press, San Diego

    Google Scholar 

  25. Erro R, Santangelo G, Picillo M, Vitale C, Amboni M, Longo K, Costagliola A, Pellecchia MT, Allocca R, De Rosa A, De Michele G, Santoro L, Barone P (2012) Link between non-motor symptoms and cognitive dysfunctions in de novo, drug-naive PD patients. J Neurol 259(9):1808–1813

    Article  PubMed  Google Scholar 

  26. Rodrigues LS, Targa AD, Noseda AC, Aurich MF, Da Cunha C, Lima MM (2014) Olfactory impairment in the rotenone model of Parkinson’s disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation. Front Cell Neurosci 8:383

    PubMed  PubMed Central  Google Scholar 

  27. Noseda AC, Rodrigues LS, Targa AD, Aurich MF, Vital MA, Da Cunha C, Lima MM (2014) Putative role of monoamines in the antidepressant-like mechanism induced by striatal MT2 blockade. Behav Brain Res 275C:136–145

    Article  Google Scholar 

  28. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134

    Article  PubMed  Google Scholar 

  29. Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci U S A 84:5976–5980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jellinger K (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51(4):540–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Muller ML, Bohnen NI, Kotagal V, Scott PJ, Koeppe RA, Frey KA, Albin RL (2015) Clinical markers for identifying cholinergic deficits in Parkinson’s disease. Mov Disord: Off J Mov Disord Soc 30(2):269–273

    Article  Google Scholar 

  32. Shimada H, Hirano S, Shinotoh H, Aotsuka A, Sato K, Tanaka N, Ota T, Asahina M, Fukushi K, Kuwabara S, Hattori T, Suhara T, Irie T (2009) Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 73(4):273–278

    Article  CAS  PubMed  Google Scholar 

  33. Bohnen NI, Muller ML, Kotagal V, Koeppe RA, Kilbourn MR, Gilman S, Albin RL, Frey KA (2012) Heterogeneity of cholinergic denervation in Parkinson’s disease without dementia. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 32(8):1609–1617

    Article  CAS  Google Scholar 

  34. Marquez-Ruiz J, Escudero M (2010) Eye movements and abducens motoneuron behavior after cholinergic activation of the nucleus reticularis pontis caudalis. Sleep 33(11):1517–1527

    Article  PubMed  PubMed Central  Google Scholar 

  35. Escudero M, Marquez-Ruiz J (2008) Tonic inhibition and ponto-geniculo-occipital-related activities shape abducens motoneuron discharge during REM sleep. J Physiol 586(14):3479–3491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nakamura Y, Goldberg LJ, Chandler SH, Chase MH (1978) Intracellular analysis of trigeminal motoneuron activity during sleep in the cat. Science 199(4325):204–207

    Article  CAS  PubMed  Google Scholar 

  37. Glenn LL, Foutz AS, Dement WC (1978) Membrane potential of spinal motoneurons during natural sleep in cats. Sleep 1(2):199–204

    CAS  PubMed  Google Scholar 

  38. Tanibuchi I, Goldman-Rakic PS (2005) Comparison of oculomotor neuronal activity in paralaminar and mediodorsal thalamus in the rhesus monkey. J Neurophysiol 93(1):614–619

    Article  PubMed  Google Scholar 

  39. Funahashi S, Bruce CJ, Goldman-Rakic PS (1991) Neuronal activity related to saccadic eye movements in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 65(6):1464–1483

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq—Brasil Grants Casadinho/Procad no. 552226/2011-4 and Universal no. 473861/2012-7 to MMSL. MMSL is recipient of CNPq fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo M. S. Lima.

Ethics declarations

Ethics Statement

The studies were carried out in accordance with the guidelines of the Committee on the Care and Use of Laboratory Animals, US National Institutes of Health. In addition, the protocol complies with the recommendations of Federal University of Paraná and was approved by the Institutional Ethics Committee (approval ID no. 759).

Conflict of Interests

The authors declare that they have no conflict of interests.

Electronic supplementary material

ESM 1

(DOCX 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, P.D., Targa, A.D.S., Noseda, A.C.D. et al. Cholinergic Oculomotor Nucleus Activity Is Induced by REM Sleep Deprivation Negatively Impacting on Cognition. Mol Neurobiol 54, 5721–5729 (2017). https://doi.org/10.1007/s12035-016-0112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0112-z

Keywords

Navigation