Skip to main content
Log in

Loss of Hippocampal Oligodendrocytes Contributes to the Deficit of Contextual Fear Learning in Adult Rats Experiencing Early Bisphenol A Exposure

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

During early development, continuous exposure to environmental contaminants such as bisphenol A (BPA) is known to alter neuronal development, resulting in aberrant brain structure and predisposing individuals to developing neuropsychiatric disorders later in life. While the altered oligodendrocyte (OL) structure and function have been casually linked to the occurrence of numerous psychiatric diseases, it remains open whether early BPA exposure (EBE) also recruits OLs to mediate its toxicity in the brain. Here, we observed that EBE from birth to postnatal day 21 caused a substantial loss of hippocampal OLs in rat pups. The OL loss was enduring and manifested even when the affected pups spanned into their adulthood. In parallel, the expression of two key proteins in mature OLs, myelin basic protein (MBP), and monocarboxylate transporter 1 (MCT1) was markedly downregulated in adult hippocampus with a considerable reduction in the number of myelinated axons. By contrast, the myelination of individual axons remained intact. The altered hippocampal OLs were related to EBE-mediated disruption of estrogen receptor (ER) signaling in developing OLs and could be readily prevented by treatment with low level of ICI 182780, an ER antagonist. Importantly, the adult rats subject to EBE exhibited clear deficit in contextual fear memory, which highly correlated with OL loss and decreased MBP and MCT1 expression in hippocampus. The OL loss may thus represent an alternative route through which EBE has its adversity on the brain and contributes to the development of neuropsychiatric illness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Braun JM, Kalkbrenner AE, Calafat AM, Yolton K, Ye X, Dietrich KN, Lanphear BP (2011) Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics 128(5):873–882. doi:10.1542/peds.2011-1335

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cao XL, Corriveau J, Popovic S (2009) Levels of bisphenol A in canned soft drink products in Canadian markets. J Agric Food Chem 57(4):1307–1311. doi:10.1021/jf803213g

    Article  CAS  PubMed  Google Scholar 

  3. Ehrlich S, Calafat AM, Humblet O, Smith T, Hauser R (2014) Handling of thermal receipts as a source of exposure to bisphenol A. Jama 311(8):859–860. doi:10.1001/jama.2013.283735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Duty SM, Mendonca K, Hauser R, Calafat AM, Ye X, Meeker JD, Ackerman R, Cullinane J et al (2013) Potential sources of bisphenol A in the neonatal intensive care unit. Pediatrics 131(3):483–489. doi:10.1542/peds.2012-1380

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huang YQ, Wong CK, Zheng JS, Bouwman H, Barra R, Wahlstrom B, Neretin L, Wong MH (2012) Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int 42:91–99. doi:10.1016/j.envint.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  6. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect 116(1):39–44. doi:10.1289/ehp.10753

    Article  CAS  PubMed  Google Scholar 

  7. Edginton AN, Ritter L (2009) Predicting plasma concentrations of bisphenol A in children younger than 2 years of age after typical feeding schedules, using a physiologically based toxicokinetic model. Environ Health Perspect 117(4):645–652. doi:10.1289/ehp.0800073

    Article  CAS  PubMed  Google Scholar 

  8. Wolstenholme JT, Rissman EF, Connelly JJ (2011) The role of Bisphenol A in shaping the brain, epigenome and behavior. Horm Behav 59(3):296–305. doi:10.1016/j.yhbeh.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  9. Jasarevic E, Williams SA, Vandas GM, Ellersieck MR, Liao C, Kannan K, Roberts RM, Geary DC et al (2013) Sex and dose-dependent effects of developmental exposure to bisphenol A on anxiety and spatial learning in deer mice (Peromyscus maniculatus bairdii) offspring. Horm Behav 63(1):180–189. doi:10.1016/j.yhbeh.2012.09.009

    Article  CAS  PubMed  Google Scholar 

  10. Johnson SA, Javurek AB, Painter MS, Ellersieck MR, Welsh TH Jr, Camacho L, Lewis SM, Vanlandingham MM et al (2015) Effects of developmental exposure to bisphenol A on spatial navigational learning and memory in rats: A CLARITY-BPA study. Horm Behav. doi:10.1016/j.yhbeh.2015.09.005

    Google Scholar 

  11. Matsuda S, Matsuzawa D, Ishii D, Tomizawa H, Sutoh C, Nakazawa K, Amano K, Sajiki J et al (2012) Effects of perinatal exposure to low dose of bisphenol A on anxiety like behavior and dopamine metabolites in brain. Prog Neuropsychopharmacol Biol Psychiatry 39(2):273–279. doi:10.1016/j.pnpbp.2012.06.016

    Article  CAS  PubMed  Google Scholar 

  12. Anderson OS, Peterson KE, Sanchez BN, Zhang Z, Mancuso P, Dolinoy DC (2013) Perinatal bisphenol A exposure promotes hyperactivity, lean body composition, and hormonal responses across the murine life course. FASEB J 27(4):1784–1792. doi:10.1096/fj.12-223545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Braun JM, Yolton K, Dietrich KN, Hornung R, Ye X, Calafat AM, Lanphear BP (2009) Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect 117(12):1945–1952. doi:10.1289/ehp.0900979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wolstenholme JT, Taylor JA, Shetty SR, Edwards M, Connelly JJ, Rissman EF (2011) Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice. PLoS One 6(9), e25448. doi:10.1371/journal.pone.0025448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Delfosse V, Grimaldi M, Pons JL, Boulahtouf A, le Maire A, Cavailles V, Labesse G, Bourguet W et al (2012) Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of bisphenol A substitutes. Proc Natl Acad Sci U S A 109(37):14930–14935. doi:10.1073/pnas.1203574109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chung E, Genco MC, Megrelis L, Ruderman JV (2011) Effects of bisphenol A and triclocarban on brain-specific expression of aromatase in early zebrafish embryos. Proc Natl Acad Sci U S A 108(43):17732–17737. doi:10.1073/pnas.1115187108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu XB, He Y, Song C, Ke X, Fan SJ, Peng WJ, Tan R, Kawata M et al (2014) Bisphenol A regulates the estrogen receptor alpha signaling in developing hippocampus of male rats through estrogen receptor. Hippocampus 24(12):1570–1580. doi:10.1002/hipo.22336

    Article  CAS  PubMed  Google Scholar 

  18. Kundakovic M, Gudsnuk K, Franks B, Madrid J, Miller RL, Perera FP, Champagne FA (2013) Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci U S A 110(24):9956–9961. doi:10.1073/pnas.1214056110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kundakovic M, Champagne FA (2011) Epigenetic perspective on the developmental effects of bisphenol A. Brain Behav Immun 25(6):1084–1093. doi:10.1016/j.bbi.2011.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yeo M, Berglund K, Hanna M, Guo JU, Kittur J, Torres MD, Abramowitz J, Busciglio J et al (2013) Bisphenol A delays the perinatal chloride shift in cortical neurons by epigenetic effects on the Kcc2 promoter. Proc Natl Acad Sci U S A 110(11):4315–4320. doi:10.1073/pnas.1300959110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bowman RE, Luine V, Khandaker H, Villafane JJ, Frankfurt M (2014) Adolescent bisphenol-A exposure decreases dendritic spine density: role of sex and age. Synapse 68(11):498–507. doi:10.1002/syn.21758

    Article  CAS  PubMed  Google Scholar 

  22. Marin-Husstege M, Muggironi M, Raban D, Skoff RP, Casaccia-Bonnefil P (2004) Oligodendrocyte progenitor proliferation and maturation is differentially regulated by male and female sex steroid hormones. Dev Neurosci 26(2-4):245–254. doi:10.1159/000082141

    Article  CAS  PubMed  Google Scholar 

  23. Patel R, Moore S, Crawford DK, Hannsun G, Sasidhar MV, Tan K, Molaie D, Tiwari-Woodruff SK (2013) Attenuation of corpus callosum axon myelination and remyelination in the absence of circulating sex hormones. Brain Pathol 23(4):462–475. doi:10.1111/bpa.12029

    Article  PubMed  PubMed Central  Google Scholar 

  24. Takahashi N, Sakurai T, Davis KL, Buxbaum JD (2011) Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol 93(1):13–24. doi:10.1016/j.pneurobio.2010.09.004

    Article  CAS  PubMed  Google Scholar 

  25. Hamidi M, Drevets WC, Price JL (2004) Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry 55(6):563–569. doi:10.1016/j.biopsych.2003.11.006

    Article  PubMed  Google Scholar 

  26. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB, Starkey M, Webster MJ et al (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362(9386):798–805. doi:10.1016/S0140-6736(03)14289-4

    Article  CAS  PubMed  Google Scholar 

  27. Gardener HE, Clark AS (2001) Systemic ICI 182,780 alters the display of sexual behaviors in the female rat. Horm Behav 39(2):121–130. doi:10.1006/hbeh.2000.1638

    Article  CAS  PubMed  Google Scholar 

  28. Alfinito PD, Chen X, Atherton J, Cosmi S, Deecher DC (2008) ICI 182,780 penetrates brain and hypothalamic tissue and has functional effects in the brain after systemic dosing. Endocrinology 149(10):5219–5226. doi:10.1210/en.2008-0532

    Article  CAS  PubMed  Google Scholar 

  29. Prins GS, Ye SH, Birch L, Ho SM, Kannan K (2011) Serum bisphenol A pharmacokinetics and prostate neoplastic responses following oral and subcutaneous exposures in neonatal Sprague-Dawley rats. Reprod Toxicol 31(1):1–9. doi:10.1016/j.reprotox.2010.09.009

    Article  CAS  PubMed  Google Scholar 

  30. Voss TC, Demarco IA, Booker CF, Day RN (2004) Computer-assisted image analysis protocol that quantitatively measures subnuclear protein organization in cell populations. Biotechniques 36(2):240–247

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu X, Liu Y, Sadamatsu M, Tsutsumi S, Akaike M, Ushijima H, Kato N (2007) Perinatal bisphenol A affects the behavior and SRC-1 expression of male pups but does not influence on the thyroid hormone receptors and its responsive gene. Neurosci Res 58(2):149–155. doi:10.1016/j.neures.2007.02.011

    Article  CAS  PubMed  Google Scholar 

  32. Clarke LE, Young KM, Hamilton NB, Li H, Richardson WD, Attwell D (2012) Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse. J Neurosci 32(24):8173–8185. doi:10.1523/JNEUROSCI.0928-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karram K, Goebbels S, Schwab M, Jennissen K, Seifert G, Steinhauser C, Nave KA, Trotter J (2008) NG2-expressing cells in the nervous system revealed by the NG2-EYFP-knockin mouse. Genesis 46(12):743–757. doi:10.1002/dvg.20440

    Article  CAS  PubMed  Google Scholar 

  34. Xiao L, Guo D, Hu C, Shen W, Shan L, Li C, Liu X, Yang W et al (2012) Diosgenin promotes oligodendrocyte progenitor cell differentiation through estrogen receptor-mediated ERK1/2 activation to accelerate remyelination. Glia 60(7):1037–1052. doi:10.1002/glia.22333

    Article  PubMed  Google Scholar 

  35. Papaconstantinou AD, Umbreit TH, Fisher BR, Goering PL, Lappas NT, Brown KM (2000) Bisphenol A-induced increase in uterine weight and alterations in uterine morphology in ovariectomized B6C3F1 mice: role of the estrogen receptor. Toxicol Sci 56(2):332–339

    Article  CAS  PubMed  Google Scholar 

  36. Papaconstantinou AD, Fisher BR, Umbreit TH, Goering PL, Lappas NT, Brown KM (2001) Effects of beta-estradiol and bisphenol A on heat shock protein levels and localization in the mouse uterus are antagonized by the antiestrogen ICI 182,780. Toxicol Sci 63(2):173–180

    Article  CAS  PubMed  Google Scholar 

  37. Takebayashi H, Yoshida S, Sugimori M, Kosako H, Kominami R, Nakafuku M, Nabeshima Y (2000) Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech Dev 99(1-2):143–148

    Article  CAS  PubMed  Google Scholar 

  38. Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD et al (2000) Sonic hedgehog--regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25(2):317–329

    Article  CAS  PubMed  Google Scholar 

  39. Sohn J, Natale J, Chew LJ, Belachew S, Cheng Y, Aguirre A, Lytle J, Nait-Oumesmar B et al (2006) Identification of Sox17 as a transcription factor that regulates oligodendrocyte development. J Neurosci 26(38):9722–9735. doi:10.1523/JNEUROSCI.1716-06.2006

    Article  CAS  PubMed  Google Scholar 

  40. Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 468(7321):244–252. doi:10.1038/nature09614

    Article  CAS  PubMed  Google Scholar 

  41. Preacher KJ, Hayes AF (2004) SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav Res Methods Instrum Comput 36(4):717–731

    Article  PubMed  Google Scholar 

  42. Rubin BS, Lenkowski JR, Schaeberle CM, Vandenberg LN, Ronsheim PM, Soto AM (2006) Evidence of altered brain sexual differentiation in mice exposed perinatally to low, environmentally relevant levels of bisphenol A. Endocrinology 147(8):3681–3691. doi:10.1210/en.2006-0189

    Article  CAS  PubMed  Google Scholar 

  43. Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10(6):434–445. doi:10.1038/nrn2639

    Article  CAS  PubMed  Google Scholar 

  44. Hashimoto-Torii K, Torii M, Fujimoto M, Nakai A, El Fatimy R, Mezger V, Ju MJ, Ishii S et al (2014) Roles of heat shock factor 1 in neuronal response to fetal environmental risks and its relevance to brain disorders. Neuron 82(3):560–572. doi:10.1016/j.neuron.2014.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hanson JL, Nacewicz BM, Sutterer MJ, Cayo AA, Schaefer SM, Rudolph KD, Shirtcliff EA, Pollak SD et al (2015) Behavioral problems after early life stress: contributions of the hippocampus and amygdala. Biol Psychiatry 77(4):314–323. doi:10.1016/j.biopsych.2014.04.020

    Article  PubMed  Google Scholar 

  46. Orellana JA, Moraga-Amaro R, Diaz-Galarce R, Rojas S, Maturana CJ, Stehberg J, Saez JC (2015) Restraint stress increases hemichannel activity in hippocampal glial cells and neurons. Front Cell Neurosci 9:102. doi:10.3389/fncel.2015.00102

    PubMed  PubMed Central  Google Scholar 

  47. Chetty S, Friedman AR, Taravosh-Lahn K, Kirby ED, Mirescu C, Guo F, Krupik D, Nicholas A et al (2014) Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Mol Psychiatry 19(12):1275–1283. doi:10.1038/mp.2013.190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nakamura K, Itoh K, Sugimoto T, Fushiki S (2007) Prenatal exposure to bisphenol A affects adult murine neocortical structure. Neurosci Lett 420(2):100–105. doi:10.1016/j.neulet.2007.02.093

    Article  CAS  PubMed  Google Scholar 

  49. Leranth C, Hajszan T, Szigeti-Buck K, Bober J, MacLusky NJ (2008) Bisphenol A prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates. Proc Natl Acad Sci U S A 105(37):14187–14191. doi:10.1073/pnas.0806139105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cerghet M, Skoff RP, Bessert D, Zhang Z, Mullins C, Ghandour MS (2006) Proliferation and death of oligodendrocytes and myelin proteins are differentially regulated in male and female rodents. J Neurosci 26(5):1439–1447. doi:10.1523/JNEUROSCI.2219-05.2006

    Article  CAS  PubMed  Google Scholar 

  51. Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, Watson CS, Zoeller RT et al (2007) In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol 24(2):178–198. doi:10.1016/j.reprotox.2007.05.010

    Article  CAS  PubMed  Google Scholar 

  52. Yaoi T, Itoh K, Nakamura K, Ogi H, Fujiwara Y, Fushiki S (2008) Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A. Biochem Biophys Res Commun 376(3):563–567. doi:10.1016/j.bbrc.2008.09.028

    Article  CAS  PubMed  Google Scholar 

  53. Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, Carmouche RP, Ibberson D, Barath P et al (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452(7183):45–50. doi:10.1038/nature06544

    Article  CAS  PubMed  Google Scholar 

  54. Seki S, Aoki M, Hosokawa T, Saito T, Masuma R, Komori M, Kurasaki M (2011) Bisphenol-A suppresses neurite extension due to inhibition of phosphorylation of mitogen-activated protein kinase in PC12 cells. Chem Biol Interact 194(1):23–30. doi:10.1016/j.cbi.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  55. Makinodan M, Tatsumi K, Okuda H, Manabe T, Yamauchi T, Noriyama Y, Kishimoto T, Wanaka A (2008) Lysophosp-hatidylcholine induces delayed myelination in the juvenile ventral hippocampus and behavioral alterations in adulthood. Neurochem Int 53(6-8):374–381. doi:10.1016/j.neuint.2008.09.009

  56. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A et al (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408):443–448. doi:10.1038/nature11314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (No. 81071096, 31160208, 31260244, 91332123), the Major State Basic Research Development Program of China (2014CB846100), Program for New Century Excellent Talents in Universities of China, “555” Talent Program, Young Scientist Program of Jiangxi Province and Natural Science Foundation of Jiangxi Province (KJLD14013, 20143ACB21002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Bin Xu or Bing-Xing Pan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, XB., Fan, SJ., He, Y. et al. Loss of Hippocampal Oligodendrocytes Contributes to the Deficit of Contextual Fear Learning in Adult Rats Experiencing Early Bisphenol A Exposure. Mol Neurobiol 54, 4524–4536 (2017). https://doi.org/10.1007/s12035-016-0003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0003-3

Keywords

Navigation