Skip to main content

Advertisement

Log in

Phosphatase 2A Inhibition Affects Endoplasmic Reticulum and Mitochondria Homeostasis Via Cytoskeletal Alterations in Brain Endothelial Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The loss of endothelial cells (ECs) homeostasis is a trigger for cerebrovascular dysfunction that is a common event in several neurodegenerative disorders such as Alzheimer’s disease (AD). The present work addressed the role of phosphatase 2A (PP2A) in cytoskeleton rearrangement, endoplasmic reticulum (ER) homeostasis, ER–mitochondria communication and mitochondrial dynamics in brain ECs. For this purpose, rat brain endothelial (RBE4) cells were exposed to okadaic acid, a well-known inhibitor of PP2A activity. An increase in the levels of tau phosphorylated on Ser396 and Thr181 residues was observed upon PP2A inhibition, concomitantly with the rearrangement of microtubules and actin cytoskeleton. Under these conditions, an increase in the levels of ER stress markers, namely GRP78, XBP1, p-eIF2αSer51, and ERO1α, was observed. Moreover, PP2A inhibition upregulated the Sigma-1 receptor, an ER chaperone located at the ER–mitochondria interface, and enhanced inter-organelle Ca2+ transfer, culminating in mitochondrial Ca2+ overload and activation of mitochondria-dependent apoptosis. The inhibition of PP2A activity also promoted an alteration of the structural and spatial mitochondria network due to upregulation of mitochondrial fission (Drp1 and Fis1) and fusion (Mfn1, Mfn2 and OPA1) proteins, suggesting detrimental changes in mitochondrial dynamics. In accordance with our in vitro observations, brain vessels from 3xTg-AD mice showed a significant decrease in PP2A protein levels accompanied by an increase in tau phosphorylated on Ser396 and GRP78 protein levels. Collectively, these results suggest that the loss of cerebrovascular homeostasis that occurs in AD might be a downstream event of the compromised activity and/or expression of PP2A, which is observed in the brain of individuals affected with this devastating neurodegenerative disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tang HL, Le AH, Lung HL (2006) The increase in mitochondrial association with actin precedes Bax translocation in apoptosis. Biochem J 396(1):1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tar K et al (2006) Role of protein phosphatase 2A in the regulation of endothelial cell cytoskeleton structure. J Cell Biochem 98(4):931–53

    Article  CAS  PubMed  Google Scholar 

  3. Tar K et al (2004) Phosphatase 2A is involved in endothelial cell microtubule remodeling and barrier regulation. J Cell Biochem 92(3):534–46

    Article  CAS  PubMed  Google Scholar 

  4. Kasa A et al (2013) Protein phosphatase 2A activity is required for functional adherent junctions in endothelial cells. Microvasc Res 89:86–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Menzel D et al (1995) Protein phosphatase 2A, a potential regulator of actin dynamics and actin-based organelle motility in the green alga Acetabularia. Eur J Cell Biol 67(2):179–87

    CAS  PubMed  Google Scholar 

  6. Terasaki M, Chen LB, Fujiwara K (1986) Microtubules and the endoplasmic reticulum are highly interdependent structures. J Cell Biol 103(4):1557–68

    Article  CAS  PubMed  Google Scholar 

  7. Korobova F, Ramabhadran V, Higgs HN (2013) An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339(6118):464–7

    Article  CAS  PubMed  Google Scholar 

  8. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E (1998) Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol 143(3):777–94

  9. Schon EA, Area-Gomez E (2013) Mitochondria-associated ER membranes in Alzheimer disease. Mol Cell Neurosci 55:26–36

    Article  CAS  PubMed  Google Scholar 

  10. Bravo R et al (2011) Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci 124(Pt 13):2143–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang X et al (2011) ER stress modulates cellular metabolism. Biochem J 435(1):285–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moreira PI et al (2007) Brain mitochondrial dysfunction as a link between Alzheimer’s disease and diabetes. J Neurol Sci 257(1–2):206–14

    Article  CAS  PubMed  Google Scholar 

  13. Murphy E (2015) Solving mitochondrial mysteries. J Mol Cell Cardiol 78:1–2

    Article  CAS  PubMed  Google Scholar 

  14. Friedman JR et al (2010) ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J Cell Biol 190(3):363–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Merrill RA, Slupe AM, Strack S (2013) N-terminal phosphorylation of protein phosphatase 2A/Bbeta2 regulates translocation to mitochondria, dynamin-related protein 1 dephosphorylation, and neuronal survival. FEBS J 280(2):662–73

    Article  CAS  PubMed  Google Scholar 

  16. Cho MH et al (2012) Increased phosphorylation of dynamin-related protein 1 and mitochondrial fission in okadaic acid-treated neurons. Brain Res 1454:100–10

    Article  CAS  PubMed  Google Scholar 

  17. Guan J et al (2013) Vascular degeneration in Parkinson’s disease. Brain Pathol 23(2):154–64

    Article  CAS  PubMed  Google Scholar 

  18. Zhong Z et al (2008) ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci 11(4):420–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zipser BD et al (2007) Microvascular injury and blood–brain barrier leakage in Alzheimer’s disease. Neurobiol Aging 28(7):977–86

    Article  CAS  PubMed  Google Scholar 

  20. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12(12):723–38

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Placido AI et al (2015) Enhanced amyloidogenic processing of amyloid precursor protein and cell death under prolonged endoplasmic reticulum stress in brain endothelial cells. Mol Neurobiol 51(2):571–90

    Article  CAS  PubMed  Google Scholar 

  22. Ma J et al (2014) Synthesis and high sensing properties of a single Pd-doped SnO2 nanoribbon. Nanoscale Res Lett 9(1):503

    Article  PubMed  PubMed Central  Google Scholar 

  23. Deniaud A et al (2008) Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27(3):285–99

    Article  CAS  PubMed  Google Scholar 

  24. Whiteman M et al (2008) Detection and measurement of reactive oxygen intermediates in mitochondria and cells. Methods Mol Biol 476:29–50

    CAS  PubMed  Google Scholar 

  25. Joshi HC, Cleveland DW (1989) Differential utilization of beta-tubulin isotypes in differentiating neurites. J Cell Biol 109(2):663–73

    Article  CAS  PubMed  Google Scholar 

  26. Rasmussen I et al (2010) Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia. BMC Immunol 11:44

    Article  PubMed  PubMed Central  Google Scholar 

  27. Carvalho C et al (2013) Type 2 diabetic and Alzheimer’s disease mice present similar behavioral, cognitive, and vascular anomalies. J Alzheimers Dis 35(3):623–35

    CAS  PubMed  Google Scholar 

  28. Cohen P, Klumpp S, Schelling DL (1989) An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBS Lett 250(2):596–600

    Article  CAS  PubMed  Google Scholar 

  29. Butler D et al (2007) Microtubule-stabilizing agent prevents protein accumulation-induced loss of synaptic markers. Eur J Pharmacol 562(1–2):20–7

    Article  CAS  PubMed  Google Scholar 

  30. Mitsuda T et al (2011) Sigma-1Rs are upregulated via PERK/eIF2alpha/ATF4 pathway and execute protective function in ER stress. Biochem Biophys Res Commun 415(3):519–25

    Article  CAS  PubMed  Google Scholar 

  31. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131(3):596–610

    Article  CAS  PubMed  Google Scholar 

  32. Ishikawa R et al (1992) Characterization of smooth muscle caldesmon as a microtubule-associated protein. Cell Motil Cytoskeleton 23(4):244–51

    Article  CAS  PubMed  Google Scholar 

  33. Moraga DM et al (1993) A tau fragment containing a repetitive sequence induces bundling of actin filaments. J Neurochem 61(3):979–86

    Article  CAS  PubMed  Google Scholar 

  34. Sattilaro RF, Dentler WL, LeCluyse EL (1981) Microtubule-associated proteins (MAPs) and the organization of actin filaments in vitro. J Cell Biol 90(2):467–73

    Article  CAS  PubMed  Google Scholar 

  35. Guay J et al (1997) Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 110(Pt 3):357–68

    CAS  PubMed  Google Scholar 

  36. Gusev NB, Bogatcheva NV, Marston SB (2002) Structure and properties of small heat shock proteins (sHsp) and their interaction with cytoskeleton proteins. Biochemistry (Mosc) 67(5):511–9

    Article  CAS  Google Scholar 

  37. Lavoie JN et al (1995) Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol Cell Biol 15(1):505–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee TY, Gotlieb AI (2003) Microfilaments and microtubules maintain endothelial integrity. Microsc Res Tech 60(1):115–27

    Article  CAS  PubMed  Google Scholar 

  39. Liu F et al (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 22(8):1942–50

    Article  PubMed  Google Scholar 

  40. Martin L, Latypova X, Terro F (2011) Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int 58(4):458–71

    Article  CAS  PubMed  Google Scholar 

  41. Gong CX et al (1993) Phosphoprotein phosphatase activities in Alzheimer disease brain. J Neurochem 61(3):921–7

    Article  CAS  PubMed  Google Scholar 

  42. Wang JZ, Grundke-Iqbal I, Iqbal K (1996) Restoration of biological activity of Alzheimer abnormally phosphorylated tau by dephosphorylation with protein phosphatase-2A, −2B and −1. Brain Res Mol Brain Res 38(2):200–8

    Article  CAS  PubMed  Google Scholar 

  43. Wang JZ, Grundke-Iqbal I, Iqbal K (2007) Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25(1):59–68

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang JZ, Liu F (2008) Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 85(2):148–75

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y et al (2015) Cross talk between PI3K-AKT-GSK-3beta and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging 36(1):188–200

    Article  PubMed  Google Scholar 

  46. Nakagawa S et al (2007) Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27(6):687–94

    Article  CAS  PubMed  Google Scholar 

  47. Cambray-Deakin MA, Burgoyne RD (1987) Acetylated and detyrosinated alpha-tubulins are co-localized in stable microtubules in rat meningeal fibroblasts. Cell Motil Cytoskeleton 8(3):284–91

    Article  CAS  PubMed  Google Scholar 

  48. Elie A et al (2015) Tau co-organizes dynamic microtubule and actin networks. Sci Rep 5:9964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fulga TA et al (2007) Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 9(2):139–48

    Article  CAS  PubMed  Google Scholar 

  50. He HJ et al (2009) The proline-rich domain of tau plays a role in interactions with actin. BMC Cell Biol 10:81

    Article  PubMed  PubMed Central  Google Scholar 

  51. Frandemiche ML et al (2014) Activity-dependent tau protein translocation to excitatory synapse is disrupted by exposure to amyloid-beta oligomers. J Neurosci 34(17):6084–97

    Article  PubMed  Google Scholar 

  52. Yu JZ, Rasenick MM (2006) Tau associates with actin in differentiating PC12 cells. FASEB J 20(9):1452–61

    Article  CAS  PubMed  Google Scholar 

  53. Dreier L, Rapoport TA (2000) In vitro formation of the endoplasmic reticulum occurs independently of microtubules by a controlled fusion reaction. J Cell Biol 148(5):883–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Joensuu M et al (2014) ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays. Mol Biol Cell 25(7):1111–26

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chambers JE, et al (2015) Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2alpha dephosphorylation. Elife 4.

  56. Ho YS et al (2012) Endoplasmic reticulum stress induces tau pathology and forms a vicious cycle: implication in Alzheimer’s disease pathogenesis. J Alzheimers Dis 28(4):839–54

    CAS  PubMed  Google Scholar 

  57. Perreault S et al (2009) Increased association between rough endoplasmic reticulum membranes and mitochondria in transgenic mice that express P301L tau. J Neuropathol Exp Neurol 68(5):503–14

    Article  CAS  PubMed  Google Scholar 

  58. Anelli T et al (2012) Ero1alpha regulates Ca(2+) fluxes at the endoplasmic reticulum-mitochondria interface (MAM). Antioxid Redox Signal 16(10):1077–87

    Article  CAS  PubMed  Google Scholar 

  59. Bhandary B et al (2012) An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 14(1):434–56

    Article  PubMed  PubMed Central  Google Scholar 

  60. Higa A, Chevet E (2012) Redox signaling loops in the unfolded protein response. Cell Signal 24(8):1548–55

    Article  CAS  PubMed  Google Scholar 

  61. Tu BP, Weissman JS (2002) The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell 10(5):983–94

    Article  CAS  PubMed  Google Scholar 

  62. Jacobson J, Duchen MR (2002) Mitochondrial oxidative stress and cell death in astrocytes—requirement for stored Ca2+ and sustained opening of the permeability transition pore. J Cell Sci 115(Pt 6):1175–88

    CAS  PubMed  Google Scholar 

  63. Lock JT, Sinkins WG, Schilling WP (2012) Protein S-glutathionylation enhances Ca2+-induced Ca2+ release via the IP3 receptor in cultured aortic endothelial cells. J Physiol 590(Pt 15):3431–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brookes PS et al (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287(4):C817–33

    Article  CAS  PubMed  Google Scholar 

  65. Dagda RK et al (2008) The spinocerebellar ataxia 12 gene product and protein phosphatase 2A regulatory subunit Bbeta2 antagonizes neuronal survival by promoting mitochondrial fission. J Biol Chem 283(52):36241–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dickey AS, Strack S (2011) PKA/AKAP1 and PP2A/Bbeta2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci 31(44):15716–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Patergnani S, Pinton P (2015) Mitophagy and mitochondrial balance. Methods Mol Biol 1241:181–94

    Article  CAS  PubMed  Google Scholar 

  68. DuBoff B, Gotz J, Feany MB (2012) Tau promotes neurodegeneration via DRP1 mislocalization in vivo. Neuron 75(4):618–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moreira PI et al (2010) Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta 1802(1):212–20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Ana I. Plácido has a PhD fellowship from the Fundação para a Ciência e Tecnologia (SFRH/BD/73388/2010). The work was supported by PEst-C/SAU/LA0001/2013—Strategic Project—LA 1-2013-2014; Gabinete de Apoio à Investigação (GAI)—Faculty of Medicine, University of Coimbra & Banco Santader Totta (project MOREIRA05.01.13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cláudia M. F. Pereira or Paula I. Moreira.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plácido, A.I., Pereira, C.M.F., Correira, S.C. et al. Phosphatase 2A Inhibition Affects Endoplasmic Reticulum and Mitochondria Homeostasis Via Cytoskeletal Alterations in Brain Endothelial Cells. Mol Neurobiol 54, 154–168 (2017). https://doi.org/10.1007/s12035-015-9640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9640-1

Keywords

Navigation