Skip to main content

Advertisement

Log in

Reduction in Autophagy by (-)-Epigallocatechin-3-Gallate (EGCG): a Potential Mechanism of Prevention of Mitochondrial Dysfunction After Subarachnoid Hemorrhage

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction and subsequent autophagy, which are common features in central nervous system (CNS) disorders, were found to contribute to neuronal cell injury after subarachnoid hemorrhage (SAH). (-)-Epigallocatechin-3-gallate (EGCG), the main biological active of tea catechin, is well known for its beneficial effects in the treatment of CNS diseases. Here, the ability of EGCG to rescue cellular injury and mitochondrial function following the improvement of autophagic flux after SAH was investigated. As expected, EGCG-protected mitochondrial function depended on the inhibition of cytosolic Ca2+ concentration ([Ca2+]i) influx via voltage-gated calcium channels (VGCCs) and, consequently, mitochondrial Ca2+ concentration ([Ca2+]m) overload via mitochondrial Ca2+ uniporter (MCU). The attenuated [Ca2+]i and [Ca2+]m levels observed in the EGCG-treated group likely lessened oxyhemoglobin (OxyHb)-induced mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondrial membrane permeability transition pore (mPTP) opening, reactive oxygen species (ROS), and cytochrosome c (cyt c) releasing. Subsequently, EGCG can restore the disrupted autophagy flux after SAH both at the initiation and formation stages by regulating Atg5, LC3B, and Becn-1 (Beclin-1) mRNA expressions. Thus, precondition EGCG resulted in autophagosomes and more autolysosomes compared with SAH group. As a result, EGCG pre-treatment increased the neurological score and decreased cell death. This study suggested that the mitochondrial dysfunction and abnormal autophagy flux synergistically contribute to SAH pathogenesis. Thus, EGCG can be regarded as a new pharmacological agent that targets both mitochondria and altered autophagy in SAH therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hop JW, Rinkel GJ, Algra A, van Gijn J (1997) Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. Stroke 28:660–664

    Article  CAS  PubMed  Google Scholar 

  2. Sehba FA, Hou J, Pluta RM, Zhang JH (2012) The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 97(1):14–37. doi:10.1016/j.pneurobio.2012.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sehba FA, Pluta RM, Zhang JH (2011) Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol 43:27–40. doi:10.1007/s12035-010-8155-z

    Article  CAS  PubMed  Google Scholar 

  4. Ayer RE, Zhang JH (2008) Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm. Acta Neurochir Suppl 104:33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hua Y, Keep RF, Hoff JT, Xi G (2008) Deferoxamine therapy for intracerebral hemorrhage. Acta Neurochir Suppl 105:3–6

    Article  CAS  PubMed  Google Scholar 

  6. Higuchi A, Yonemitsu K, Koreeda A, Tsunenari S (2003) Inhibitory activity of epigallocatechin gallate (EGCG) in paraquat-induced microsomal lipid peroxidation—a mechanism of protective effects of EGCG against paraquat toxicity. Toxicology 183:143–149

    Article  CAS  PubMed  Google Scholar 

  7. Ingall T, Asplund K, Mähönen M, Bonita R (2000) A multinational comparison of subarachnoid hemorrhage epidemiology in the WHO MONICA stroke study. Stroke 31(5):1054–1061

    Article  CAS  PubMed  Google Scholar 

  8. Liang W, Lee AH, Binns CW, Huang R, Hu D, Zhou Q (2009) Tea consumption and ischemic stroke risk: a case-control study in southern China. Stroke 40(7):2480–2485. doi:10.1161/STROKEAHA.109.548586

    Article  PubMed  Google Scholar 

  9. Yao C, Zhang J, Liu G, Chen F, Lin Y (2014) Neuroprotection by (-)-epigallocatechin-3-gallate in a rat model of stroke is mediated through inhibition of endoplasmic reticulum stress. Mol Med Rep 9(1):69–76. doi:10.3892/mmr.2013.1778

    CAS  PubMed  Google Scholar 

  10. Hyung SJ, DeToma AS, Brender JR, Lee S, Vivekanandan S, Kochi A et al (2013) Insight into antiamyloidogenic properties of the green tea extract (-)-epigallocatechin-3-gallate toward metal-associated amyloid-β species. Proc Natl Acad Sci U S A 110(10):3743–3748. doi:10.1073/pnas.1220326110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Itoh T, Tabuchi M, Mizuguchi N, Imano M, Tsubaki M, Nishida S et al (2013) Neuroprotective effect of (-)-epigallocatechin-3-gallate in rats when administered pre- or post-traumatic brain injury. J Neural Transm 120(5):767–783. doi:10.1007/s00702-012-0918-4

    Article  CAS  PubMed  Google Scholar 

  12. Biasibetti R, Tramontina AC, Costa AP, Dutra MF, Quincozes-Santos A, Nardin P et al (2013) Green tea (-)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav Brain Res 236(1):186–193. doi:10.1016/j.bbr.2012.08.039

    Article  CAS  PubMed  Google Scholar 

  13. Ranzato E, Magnelli V, Martinotti S, Waheed Z, Cain SM, Snutch TP et al (2014) Epigallocatechin-3-gallate elicits Ca2+ spike in MCF-7 breast cancer cells: essential role of Cav3.2 channels. Cell Calcium 56(4):285–295. doi:10.1016/j.ceca.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  14. Nakagawa K, Miyazawa T (1997) Absorption and distribution of tea catechin, (-)-epigallocatechin-3-gallate, in the rat. J Nutr Sci Vitaminol 43(6):679–684

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Yang ND, Zhou F, Shen T, Duan T, Zhou J et al (2012) (-)-Epigallocatechin-3-gallate induces non-apoptotic cell death in human cancer cells via ROS-mediated lysosomal membrane permeabilization. PLoS One 7(10):e46749. doi:10.1371/journal.pone.0046749

  16. Weng Z, Zhou P, Salminen WF, Yang X, Harrill AH, Cao Z et al (2014) Green tea epigallocatechin gallate binds to and inhibits respiratory complexes in swelling but not normal rat hepatic mitochondria. Biochem Biophys Res Commun 443(3):1097–1104. doi:10.1016/j.bbrc.2013.12.110

    Article  CAS  PubMed  Google Scholar 

  17. Mikutis G, Karakose H, Jaiswal R, LeGresley A, Islam T, Fernandez-Lahore M, Kuhnert N (2013) Phenolic promiscuity in the cell nucleus—epigallocatechingallate (EGCG) and theaflavin-3,3′-digallate from green and black tea bind to model cell nuclear structures including histone proteins, double stranded DNA and telomeric quadruplex DNA. Food Funct 4(2):328–337. doi:10.1039/c2fo30159h

    Article  CAS  PubMed  Google Scholar 

  18. Mo HZ, Chen Y, Huang LY, Zhang H, Li JX, Zhou WK (2013) Neuroprotecitve effect of tea polyphenols on oxyhemoglobin induced subarachnoid hemorrhage in mice. Oxidative Med Cell Longev 2013:743983. doi:10.1155/2013/743938

    Article  Google Scholar 

  19. Tait SW, Green DR (2012) Mitochondria and cell signaling. J Cell Sci 125:807–815. doi:10.1242/jcs.099234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Soboll S (1995) Regulation of energy metabolism in liver. J Bioenerg Biomembr 27(6):571–582

    Article  CAS  PubMed  Google Scholar 

  21. Smith RA, Hartley RD, Cochemé HM, Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33:341–352. doi:10.1016/j.tips.2012.03.010

    Article  CAS  PubMed  Google Scholar 

  22. Martin TF, Grishanin RN (2003) PC12 cells as a model for studies of regulated secretion in neuronal and endocrine cells. Methods Cell Biol 71:267–286

    Article  CAS  PubMed  Google Scholar 

  23. Kang KS, Wen Y, Yamabe N, Fukui M, Bishop SC, Zhu BT (2010) Dual beneficial effects of (-)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies. PLoS One 5(8):e11951. doi:10.1371/journal.pone.0011951

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huang LY, Wan J, Chen Y, Wang ZW, Hui L, Li Y et al (2013) Inhibitory effects of p38 inhibitor against mitochondrial dysfunction in the early brain injury after subarachnoid hemorrhage in mice. Brain Res 1517:133–140. doi:10.1016/j.brainres.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  25. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26(4):627–634, discussion 635

    Article  CAS  PubMed  Google Scholar 

  26. Kim HS, Montana V, Jang HJ, Parpura V, Kim JA (2013) Epigallocatechingallate (EGCG) stimulates autophagy in vascular endothelial cells: a potential role for reducing lipid accumulation. J Biol Chem 288(31):22693–22705. doi:10.1074/jbc.M113.477505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chou CW, Huang WJ, Tien LT, Wang SJ (2007) (-)-Epigallocatechingallate, the most active polyphenolic catechin in green tea, presynaptically facilitates Ca2+-dependent glutamate release via activation of protein kinase C in rat cerebral cortex. Synapse 61(11):889–902

    Article  CAS  PubMed  Google Scholar 

  28. Kargacin ME, Emmett TL, Kargacin GJ (2011) Epigallocatechin-3-gallatehasdual, independent effects on the cardiac sarcoplasmic reticulum/endoplasmic reticulum Ca2+ ATPase. J Muscle Res Cell Motil 32:89–98. doi:10.1007/s10974-011-9256-7

    Article  CAS  PubMed  Google Scholar 

  29. Soler F, Asensio MC, Fernandez-Belda F (2012) Inhibition of the intracellular Ca(2+) transporter SERCA (sarco-endoplasmic reticulum Ca(2+)-ATPase) by the natural polyphenol epigallocatechin-3-gallate. J Bioenerg Biomembr 44(5):597–605. doi:10.1007/s10863-012-9462-z

    Article  CAS  PubMed  Google Scholar 

  30. Shi X, Fu Y, Liao D, Chen Y, Liu J (2014) Alterations of voltage-dependent calcium channel currents in basilar artery smooth muscle cells at early stage of subarachnoid hemorrhage in a rabbit model. PLoS One 9(1):e84129. doi:10.1371/journal.pone.0084129

    Article  PubMed  PubMed Central  Google Scholar 

  31. Oliviero F, Sfriso P, Scanu A, Fiocco U, Spinella P, Punzi L (2013) Epigallocatechin-3-gallate reduces inflammation induced by calcium pyrophosphate crystals in vitro. Front Pharmacol 4:51. doi:10.3389/fphar.2013.00051

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yan H, Zhang D, Hao S, Li K, Hang CH (2015) Role of mitochondrial calcium uniporter in early brain injury after experimental subarachnoid hemorrhage. Mol Neurobiol 52(3):1637–1647. doi:10.1007/s12035-014-8942-z

    Article  CAS  PubMed  Google Scholar 

  33. Hausenloy D, Wynne A, Duchen M, Yellon D (2004) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109(14):1714–1717

    Article  CAS  PubMed  Google Scholar 

  34. Chen H, Liu C, Yin J, Chen Z, Xu J, Wang D et al (2015) Mitochondrial cyclophilin D as a potential therapeutic target for ischemia-induced facial palsy in rats. Cell Mol Neurobiol 35(7):931–941. doi:10.1007/s10571-015-0188-4

    Article  CAS  PubMed  Google Scholar 

  35. Wu CC, Bratton SB (2013) Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxid Redox Signal 19(6):546–558. doi:10.1089/ars

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shao A, Wang Z, Wu H, Dong X, Li Y, Tu S et al (2014) Enhancement of autophagy by histone deacetylase inhibitor trichostatin A ameliorates neuronal apoptosis after subarachnoid hemorrhage in rats. Mol Neurobiol in press

  37. Liu Y, Li J, Wang Z, Yu Z, Chen G (2014) Attenuation of early brain injury and learning deficits following experimental subarachoid hemorrhage secondary to cystatin C: possible involvement of the autophagy pathway. Mol Neurobiol 49(2):1043–1054. doi:10.1007/s12035-013-8579-3

    Article  CAS  PubMed  Google Scholar 

  38. Jing CH, Wang L, Liu PP, Wu C, Ruan D, Chen G (2012) Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience 213:144–153. doi:10.1016/j.neuroscience.2012.03.055

    Article  CAS  PubMed  Google Scholar 

  39. Wang Z, Shi XY, Yin J, Zuo G, Zhang J, Chen G (2012) Role of autophagy in early brain injury after experimental subarachnoid hemorrhage. J Mol Neurosci 46:192–202. doi:10.1007/s12031-011-9575-6

    Article  CAS  PubMed  Google Scholar 

  40. Carloni S, Buonocore G, Balduini W (2008) Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 32:329–339. doi:10.1016/j.nbd.2008.07.022

    Article  CAS  PubMed  Google Scholar 

  41. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD et al (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4(6):762–769

    Article  CAS  PubMed  Google Scholar 

  42. Lee JY, He Y, Sagher O, Keep R, Hua Y, Xi G (2009) Activated autophagy pathway in experimental subarachnoid hemorrhage. Brain Res 1287:126–135. doi:10.1016/j.brainres.2009.06.028

    Article  CAS  PubMed  Google Scholar 

  43. Zhou J, Farah BL, Sinha RA, Wu Y, Singh BK, Bay BH et al (2014) Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance. PLoS One 9:e87161. doi:10.1371/journal.pone.0087161

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gu HF, Nie YX, Tong QZ, Tang YL, Zeng Y, Jing KQ et al (2014) Epigallocatechin-3-gallate attenuates impairment of learning and memory in chronic unpredictable mild stress-treated rats by restoring hippocampal autophagic flux. PLoS One 9(11):e112683. doi:10.1371/journal.pone.0112683

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM (2014) Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 10(12):2208–2222. doi:10.4161/15548627.2014.981787

    Article  CAS  PubMed  Google Scholar 

  46. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of ATG proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132. doi:10.1146/annurev-cellbio-092910-154005

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Gao AJ, Xu X, Dang BQ, You WC, Li HY et al (2015) The neuroprotection of lysosomotropic agents in experimental subarachnoid hemorrhage probably involving the apoptosis pathway triggering by cathepsins via chelating intralysosomal iron. Mol Neurobiol 52(1):64–77. doi:10.1007/s12035-014-8846-y

    Article  CAS  PubMed  Google Scholar 

  48. Kosacka J, Kern M, Klöting N, Paeschke S, Rudich A, Haim Y et al (2015) Autophagy in adipose tissue of patients with obesity and type 2 diabetes. Mol Cell Endocrinol 409:21–32. doi:10.1016/j.mce.2015.03.015

    Article  CAS  PubMed  Google Scholar 

  49. Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH et al (2008) Novel targetsfor Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol 4(5):295–305. doi:10.1038/nchembio.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fleming A, Noda T, Yoshimori T, Rubinsztein DC (2011) Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 7(1):9–17. doi:10.1038/nchembio.500

    Article  CAS  PubMed  Google Scholar 

  51. Vidal RL, Matus S, Bargsted L, Hetz C (2014) Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci 35(11):583–591. doi:10.1016/j.tips.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  52. Büttner S, Broeskamp F, Sommer C, Markaki M, Habernig L, Alavian-Ghavanini A et al (2014) Spermidine protects against α-synuclein neurotoxicity. Cell Cycle 13(24):3903–3908. doi:10.4161/15384101.2014.973309

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jeong JK, Moon MH, Bae BC, Lee YJ, Seol JW, Kang HS et al (2012) Autophagy induced by resveratrol prevents human prion protein-mediated neurotoxicity. Neurosci Res 73(2):99–105. doi:10.1016/j.neures.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  54. Jiang TF, Zhang YJ, Zhou HY, Wang HM, Tian LP, Liu J et al (2013) Curcumin ameliorates the neurodegenerative pathology in A53T α-synuclein cell model of Parkinson’s disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy. J Neuroimmune Pharmacol 8(1):356–369. doi:10.1007/s11481-012-9431-7

    Article  PubMed  Google Scholar 

  55. Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z et al (2011) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 19(3):163–174. doi:10.1159/000328516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Martinez-Vicente M (2015) Autophagy in neurodegenerative diseases: from pathogenic dysfunction to therapeutic modulation. Semin Cell Dev Biol. doi:10.1016/j.semcdb.2015.03.005

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Funding

This work is supported by the National Nature Sciences Foundation of China (No. 31200519) and Natural Science Foundation of Henan (No. 132300410339).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Huang, L., Zhang, H. et al. Reduction in Autophagy by (-)-Epigallocatechin-3-Gallate (EGCG): a Potential Mechanism of Prevention of Mitochondrial Dysfunction After Subarachnoid Hemorrhage. Mol Neurobiol 54, 392–405 (2017). https://doi.org/10.1007/s12035-015-9629-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9629-9

Keywords

Navigation