Skip to main content
Log in

FLZ Attenuates α-Synuclein-Induced Neurotoxicity by Activating Heat Shock Protein 70

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. The pathology of PD is caused by progressive degeneration of dopaminergic neurons and is characterized by the presence of intracellular inclusions known as Lewy bodies, composed mainly of α-synuclein. Heat shock proteins (HSPs) are crucial in protein quality control in cells. HSP70 in particular prevents the aggregation of protein aggregation, such as α-synuclein, providing a degree of protection against PD. The compound FLZ has been shown to protect several PD models in previous studies and was reported as an HSP inducer to protect against MPP+-induced neurotoxicity, but the mechanism remains unclear. In this study, we investigated the effects of FLZ-mediated HSP70 induction in α-synuclein transgenic mice and cells. FLZ treatment alleviated motor dysfunction and improved dopaminergic neuronal function in α-synuclein transgenic mice. HSP70 protein expression and transcriptional activity were increased by FLZ treatment, eliciting a reduction of α-synuclein aggregation and associated toxicity. The inhibition of HSP70 by quercetin or HSP70 siRNA markedly attenuated the neuroprotective effects of FLZ, confirming that FLZ exerted a neuroprotective effect through HSP70. We revealed that FLZ directly bound to and increased the expression of Hip, a cochaperone of HSP70, which in turn enhanced HSP70 activity. In conclusion, we defined a critical role for HSP70 and its cochaperones activated by FLZ in preventing neurodegeneration and proposed that targeting the HSP70 system may represent a potential therapy for α-synuclein-related diseases, such as PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    Article  PubMed  Google Scholar 

  2. Cheng FR, Vivacqua G, Yu S (2011) The role of α-synuclein in neurotransmission and synaptic plasticity. J Chem Neuroanat 42:242–248

    Article  CAS  PubMed  Google Scholar 

  3. Tönges L, Szegö EM, Hause P, Saal KA, Tatenhorst L, Koch JC, D Hedouville Z, Dambeck V, Kügler S et al (2014) Alpha-synuclein mutations impair axonal regeneration in models of Parkinson’s disease. Front Aging Neurosci 6:239

  4. Ikeda M, Kawarabayashi T, Harigaya Y, Sasaki A, Yamada S, Matsubara E, Murakami T, Tanaka Y, Kurata T et al (2009) Motor impairment and aberrant production of neurochemicals in human alpha-synuclein A30P + A53T transgenic mice with alpha-synuclein pathology. Brain Res 1250:232–241

  5. Taymans JM, Baekelandt V (2014) Phosphatases of α-synuclein, LRRK2, and tau: important players in the phosphorylation-dependent pathology of Parkinsonism. Front Genet 5:382

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mullin S, Schapira AH (2015) Pathogenic mechanisms of neurodegeneration in Parkinson disease. Neurol Clin 33:1–17

    Article  PubMed  Google Scholar 

  7. Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E, Hyman BT, McLean PJ, Unni VK (2011) Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy- lysosomal pathway in the degradation of {alpha}-synuclein. J Neurosci 31:14508–14520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aridon P, Geraci F, Turturici G, D’Amelio M, Savettieri G, Sconzo G (2011) Protective role of heat shock proteins in Parkinson’s disease. Neurodegener Dis 8:155–168

    Article  CAS  PubMed  Google Scholar 

  9. Bozaykut P, Ozer NK, Karademir B (2014) Regulation of protein turnover by heat shock proteins. Free Radic Biol Med 77:195–209

    Article  CAS  PubMed  Google Scholar 

  10. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alphasynuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295:865–868

    Article  CAS  PubMed  Google Scholar 

  11. Pemberton S, Madiona K, Pieri L, Kabani M, Bousset L, Melki R (2011) Hsc70 protein interaction with soluble and fibrillar alpha-synuclein. J Biol Chem 286:34690–34699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moloney TC, Hyland R, O’Toole D, Paucard A, Kirik D, O’Doherty A, Gorman AM, Dowd E (2014) Heat shock protein 70 reduces α-synuclein-induced predegenerative neuronal dystrophy in the α-synuclein viral gene transfer rat model of Parkinson’s disease. CNS Neurosci Ther 20:50–58

    Article  CAS  PubMed  Google Scholar 

  13. Danzer KM, Ruf WP, Putcha P, Joyner D, Hashimoto T, Glabe C, Hyman BT, McLean PJ (2011) Heat shock protein 70 modulates toxic extracellular alpha-synuclein oligomers and rescues transsynaptic toxicity. FASEB J 25:326–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dong Z, Wolfer DP, Lipp HP, Bueler H (2005) Hsp70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease. Mol Ther 11:80–88

    Article  CAS  PubMed  Google Scholar 

  15. Wu YR, Wang CK, Chen CM, Hsu Y, Lin SJ, Lin YY, Fung HC, Chang KH, Lee-Chen GJ (2004) Analysis of heat-shock protein 70 gene polymorphisms and the risk of Parkinson’s disease. Hum Genet 114:236–241

  16. Olanow CW, Jankovic J (2005) Neuroprotective therapy in Parkinson’s disease and motor complications: a search for a pathogenesis-targeted, disease-modifying strategy. Mov Disord 20(Suppl 11):S3–S10

    Article  PubMed  Google Scholar 

  17. Bao XQ, Kong XC, Qian C, Zhang D (2012) FLZ protects dopaminergic neuron through activating protein kinase B/mammalian target of rapamycin pathway and inhibiting RTP801 expression in Parkinson’s disease models. Neuroscience 202:396–404

    Article  CAS  PubMed  Google Scholar 

  18. Bao XQ, Kong XC, Kong LB, Wu LY, Sun H, Zhang D (2014) Squamosamide derivative FLZ protected dopaminergic neuron by activating Akt signaling pathway in 6-OHDA-induced in vivo and in vitro Parkinson’s disease models. Brain Res 1547:49–57

    Article  CAS  PubMed  Google Scholar 

  19. Bao XQ, Wu LY, Wang XL, Sun H, Zhang D (2015) Squamosamide derivative FLZ protected tyrosine hydroxylase function in a chronic MPTP/probenecid mouse model of Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol 388:549–556

    Article  CAS  PubMed  Google Scholar 

  20. Kong XC, Zhang D, Qian C, Liu GT, Bao XQ (2011) FLZ, a novel HSP27 and HSP70 inducer, protects SH-SY5Y cells from apoptosis caused by MPP(+). Brain Res 1383:99–107

    Article  CAS  PubMed  Google Scholar 

  21. Molochnikov L, Rabey JM, Dobronevsky E, Bonucelli U, Ceravolo R, Frosini D, Grünblatt E, Riederer P, Jacob C et al (2012) A molecular signature in blood identifies early Parkinson’s disease. Mol Neurodegener 7:26

  22. Fernández-Montesinos R, de Jong J, van Ham TJ, Nollen EA, Pozo D, Christodoulou J, Dobson CM (2009) Chaperone proteostasis in Parkinson’s disease: stabilization of the Hsp70/α-synuclein complex by Hip. EMBO J 28:3758–3770

    Article  PubMed  PubMed Central  Google Scholar 

  23. Donmez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L (2012) SIRT1 protects against α-synuclein aggregation by activating molecular chaperones. J Neurosci 32:124–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM, Egami K, Munishkina L, Zhang J, Gardner B et al (2011) Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem 286:20710–20726

  25. Bae EJ, Yang NY, Lee C, Lee HJ, Kim S, Sardi SP, Lee SJ (2015) Loss of glucocerebrosidase 1 activity causes lysosomal dysfunction and α-synuclein aggregation. Exp Mol Med 47:e153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsigelny IF, Sharikov Y, Kouznetsova VL, Greenberg JP, Wrasidlo W, Overk C, Gonzalez T, Trejo M, Spencer B et al (2015) Molecular determinants of α-synuclein mutants’ oligomerization and membrane interactions. ACS Chem Neurosci 6:403–416

  27. Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, Wolozin B (1999) α-Synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci 19:5782–5791

    CAS  PubMed  Google Scholar 

  28. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34:521–533

    Article  CAS  PubMed  Google Scholar 

  29. Klucken J, Ingelsson M, Shin Y, Irizarry MC, Hedley-Whyte ET, Frosch M, Growdon J, McLean P, Hyman BT (2006) Clinical and biochemical correla tes of insoluble alpha-synuclein in dementia with Lewy bodies. Acta Neuropathol 111:101–108

  30. Luk KC, Mills IP, Trojanowski JQ, Lee VM (2008) Interactions between Hsp70 and the hydrophobic core of alpha-synuclein inhibit fibril assembly. Biochemistry 47:12614–12625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Outeiro TF, Putcha P, Tetzlaff JE, Spoelgen R, Koker M, Carvalho F, Hyman BT, McLean PJ (2008) Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS One 3:e1867

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kilpatrick K, Novoa JA, Hancock T, Guerriero CJ, Wipf P, Brodsky JL, Segatori L (2013) Chemical induction of Hsp70 reduces α-synuclein aggregation in neuroglioma cells. ACS Chem Biol 8:1460–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thakur P, Nehru B (2014) Long-term heat shock proteins (HSPs) induction by carbenoxolone improves hallmark features of Parkinson’s disease in a rotenone-based model. Neuropharmacology 79:190–200

    Article  CAS  PubMed  Google Scholar 

  34. Putcha P, Danzer KM, Kranich LR, Scott A, Silinski M, Mabbett S, Hicks CD, Veal JM, Hyman BT et al (2010) Brain-permeable small-molecule inhibitors of Hsp90 prevent alpha-synuclein oligomer formation and rescue alpha-synuclein-induced toxicity. J Pharmacol Exp Ther 332:849–857

  35. Kim N, Kim JY, Yenari MA (2015) Pharmacological induction of the 70-kDa heat shock protein protects against brain injury. Neuroscience 284:912–919

    Article  CAS  PubMed  Google Scholar 

  36. Leng Y, Marinova Z, Reis-Fernandes MA, Nau H, Chuang DM (2010) Potent neuroprotective effects of novel structural derivatives of valproic acid: potential roles of HDAC inhibition and HSP70 induction. Neurosci Lett 476:127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cleren C, Calingasan NY, Chen J, Beal MF (2005) Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity. J Neurochem 94:995–1004

    Article  CAS  PubMed  Google Scholar 

  38. Shimshek DR, Mueller M, Wiessner C, Schweizer T, van der Putten PH (2010) The HSP70 molecular chaperone is not beneficial in a mouse model of alpha-synucleinopathy. PLoS One 5:e10014

    Article  PubMed  PubMed Central  Google Scholar 

  39. Howarth JL, Glover CP, Uney JB (2009) HSP70 interacting protein prevents the accumulation of inclusions in polyglutamine disease. J Neurochem 108:945–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Velten M, Villoutreix BO, Ladjimi MM (2000) Quaternary structure of the HSC70 cochaperone HIP. Biochemistry 39:307–315

    Article  CAS  PubMed  Google Scholar 

  41. Li Z, Hartl FU, Bracher A (2013) Structure and function of Hip, an attenuator of the Hsp70 chaperone cycle. Nat Struct Mol Biol 20:929–935

    Article  CAS  PubMed  Google Scholar 

  42. Scherzer CR, Eklund AC, Morse LJ, Liao Z, Locascio JJ, Fefer D, Schwarzschild MA, Schlossmacher MG, Hauser MA et al (2007) Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc Natl Acad Sci U S A 104:955–960

Download references

Acknowledgments

This work was supported by grants from the National Science Foundation of China (No. 81000568), the Chinese National Basic Research Program (973 program, No. 2011CB504105), Beijing NOVA Program (2011109), Beijing City Talents (2012D0009008000005), and supported by the Program for New Century Excellent Talents in University (3332013128).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, XQ., Wang, XL. & Zhang, D. FLZ Attenuates α-Synuclein-Induced Neurotoxicity by Activating Heat Shock Protein 70. Mol Neurobiol 54, 349–361 (2017). https://doi.org/10.1007/s12035-015-9572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9572-9

Keywords

Navigation