Skip to main content
Log in

Colistin-Induced Apoptosis of Neuroblastoma-2a Cells Involves the Generation of Reactive Oxygen Species, Mitochondrial Dysfunction, and Autophagy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurotoxicity remains a poorly characterized adverse effect associated with colistin therapy. The aim of the present study was to investigate the mechanism of colistin-induced neurotoxicity using the mouse neuroblastoma2a (N2a) cell line. Colistin treatment (0–200 μM) of N2a neuronal cells induced apoptotic cell death in a dose-dependent manner. Colistin-induced neurotoxicity was associated with a significant increase of reactive oxygen species (ROS) levels, with a concomitant decrease in the activities of superoxide dismutase (SOD), catalase (CAT), and the glutathione (GSH) levels. Mitochondrial dysfunction was evident from the dissipation of membrane potential and the increase of Bax/Bcl-2, followed by the release of cytochrome c (CytC). Caspase-3/7, -8, and -9 activations were also detected. Colistin-induced neurotoxicity significantly increased the gene expression of p53 (1.6-fold), Bax (3.3-fold), and caspase-8 (2.2-fold) (all p < 0.01). The formation of autophagic vacuoles was evident with the significant increases (all p < 0.05 or 0.01) of both of Beclin 1 and LC3B following colistin treatment (50–200 μM). Furthermore, inhibition of autophagy by pretreatment with chloroquine diphosphate (CQ) enhanced colistin-induced apoptosis via caspase activation, which could be attenuated by co-treatment with the pan-caspase inhibitor Z-VAD-FMK. In summary, our study reveals that colistin-induced neuronal cell death involves ROS-mediated oxidative stress and mitochondrial dysfunction, followed by caspase-dependent apoptosis and autophagy. A knowledge base of the neuronal signaling pathways involved in colistin-induced neurotoxicity will greatly facilitate the discovery of neuroprotective agents for use in combination with colistin to prevent this undesirable side effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nation RL, Li J, Cars O, Couet W, Dudley MN, Kaye KS, Mouton JW, Paterson DL et al (2014) Framework for optimisation of the clinical use of colistin and polymyxin B: the Prato polymyxin consensus. Lancet Infect Dis. doi:10.1016/S1473-3099(14)70850-3

    PubMed  Google Scholar 

  2. Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL (2006) Colistin: the re-emerging antibiotic for multidrug-resistant gram-negative bacterial infections. Lancet Infect Dis 6(9):589–601. doi:10.1016/S1473-3099(06)70580-1

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Nation RL, Milne RW, Turnidge JD, Coulthard K (2005) Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. Int J Antimicrob Agents 25(1):11–25. doi:10.1016/j.ijantimicag.2004.10.001

    Article  PubMed  Google Scholar 

  4. Bergen PJ, Li J, Rayner CR, Nation RL (2006) Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother 50(6):1953–1958. doi:10.1128/AAC.00035-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, Silveira FP, Forrest A et al (2011) Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother 55(7):3284–3294. doi:10.1128/AAC.01733-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wahby K, Chopra T, Chandrasekar P (2010) Intravenous and inhalational colistin-induced respiratory failure. Clin Infect Dis 50(6):e38–e40. doi:10.1086/650582

    Article  PubMed  Google Scholar 

  7. Falagas ME, Kasiakou SK (2006) Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care 10(1):R27. doi:10.1186/cc3995

    Article  PubMed  PubMed Central  Google Scholar 

  8. Honore PM, Jacobs R, Lochy S, De Waele E, Van Gorp V, De Regt J, Martens G, Joannes-Boyau O et al (2013) Acute respiratory muscle weakness and apnea in a critically ill patient induced by colistin neurotoxicity: key potential role of hemoadsorption elimination during continuous venovenous hemofiltration. Int J Nephrol Renovasc Dis 6:107–111. doi:10.2147/IJNRD.S42791

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weinstein L, Doan TL, Smith MA (2009) Neurotoxicity in patients treated with intravenous polymyxin B: two case reports. Am J Health Syst Pharm 66(4):345–347. doi:10.2146/ajhp080065

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Dai C, Gao R, Li J (2013) Ascorbic acid protects against colistin sulfate-induced neurotoxicity in PC12 cells. Toxicol Mech Methods 23(8):584–590. doi:10.3109/15376516.2013.807532

    Article  PubMed  Google Scholar 

  11. Zhang C, Wang C, Tang S, Sun Y, Zhao D, Zhang S, Deng S, Zhou Y et al (2013) TNFR1/TNF-alpha and mitochondria interrelated signaling pathway mediates quinocetone-induced apoptosis in HepG2 cells. Food Chem Toxicol 62:825–838. doi:10.1016/j.fct.2013.10.022

    Article  CAS  PubMed  Google Scholar 

  12. Biederbick A, Kern HF, Elsasser HP (1995) Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 66(1):3–14

    CAS  PubMed  Google Scholar 

  13. Kantara C, O’Connell M, Sarkar S, Moya S, Ullrich R, Singh P (2014) Curcumin promotes autophagic survival of a subset of colon cancer stem cells, which are ablated by DCLK1-siRNA. Cancer Res 74(9):2487–2498. doi:10.1158/0008-5472.CAN-13-3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shailasree S, Venkataramana M, Niranjana SR, Prakash HS (2015) Cytotoxic effect of p-coumaric acid on neuroblastoma, N2a cell via generation of reactive oxygen species leading to dysfunction of mitochondria inducing apoptosis and autophagy. Mol Neurobiol 51(1):119–130. doi:10.1007/s12035-014-8700-2

    Article  CAS  PubMed  Google Scholar 

  15. Dai C, Li J, Tang S, Li J, Xiao X (2014) Colistin-induced nephrotoxicity in mice involves the mitochondrial, death receptor, and endoplasmic reticulum pathways. Antimicrob Agents Chemother 58(7):4075–4085. doi:10.1128/AAC.00070-14

    Article  PubMed  PubMed Central  Google Scholar 

  16. Koch-Weser J, Sidel VW, Federman EB, Kanarek P, Finer DC, Eaton AE (1970) Adverse effects of sodium colistimethate. Manifestations and specific reaction rates during 317 courses of therapy. Ann Intern Med 72(6):857–868

    Article  CAS  PubMed  Google Scholar 

  17. Dai C, Tang S, Li J, Wang J, Xiao X (2014) Effects of colistin on the sensory nerve conduction velocity and F-wave in mice. Basic Clin Pharmacol Toxicol 115(6):577–580. doi:10.1111/bcpt.12272

    Article  CAS  PubMed  Google Scholar 

  18. Bosso JA, Liptak CA, Seilheimer DK, Harrison GM (1991) Toxicity of colistin in cystic fibrosis patients. DICP 25(11):1168–1170

    CAS  PubMed  Google Scholar 

  19. Dai C, Li J, Li J (2013) New insight in colistin induced neurotoxicity with the mitochondrial dysfunction in mice central nervous tissues. Exp Toxicol Pathol 65(6):941–948. doi:10.1016/j.etp.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  20. Dai C, Li J, Lin W, Li G, Sun M, Wang F, Li J (2012) Electrophysiology and ultrastructural changes in mouse sciatic nerve associated with colistin sulfate exposure. Toxicol Mech Methods 22(8):592–596. doi:10.3109/15376516.2012.704956

    Article  CAS  PubMed  Google Scholar 

  21. Wallace SJ, Li J, Nation RL, Rayner CR, Taylor D, Middleton D, Milne RW, Coulthard K et al (2008) Subacute toxicity of colistin methanesulfonate in rats: comparison of various intravenous dosage regimens. Antimicrob Agents Chemother 52(3):1159–1161. doi:10.1128/AAC.01101-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin B, Zhang C, Xiao X (2005) Toxicity, bioavailability and pharmacokinetics of a newly formulated colistin sulfate solution. J Vet Pharmacol Ther 28(4):349–354. doi:10.1111/j.1365-2885.2005.00666.x

    Article  CAS  PubMed  Google Scholar 

  23. Landman WJ, Dwars RM, Keukens HJ, Berendsen BJ (2000) Polymyxin E-1 (colistin sulphate) (neuro-)intoxication in young ostriches (Struthio camelus spp.). Avian Pathol 29(6):593–601. doi:10.1080/03079450020016841

    Article  CAS  PubMed  Google Scholar 

  24. Dai C, Zhang D, Li J (2013) Effect of colistin exposure on calcium homeostasis and mitochondria functions in chick cortex neurons. Toxicol Mech Methods 23(4):281–288. doi:10.3109/15376516.2012.754533

    Article  CAS  PubMed  Google Scholar 

  25. Dai C, Zhang D, Gao R, Zhang X, Li J (2013) In vitro toxicity of colistin on primary chick cortex neurons and its potential mechanism. Environ Toxicol Pharmacol 36(2):659–666. doi:10.1016/j.etap.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  26. Fu XY, Yang MF, Cao MZ, Li DW, Yang XY, Sun JY, Zhang ZY, Mao LL et al (2014) Strategy to suppress oxidative damage-induced neurotoxicity in PC12 cells by curcumin: the role of ROS-mediated DNA damage and the MAPK and AKT pathways. Mol Neurobiol. doi:10.1007/s12035-014-9021-1

    Google Scholar 

  27. Xie BS, Zhao HC, Yao SK, Zhuo DX, Jin B, Lv DC, Wu CL, Ma DL et al (2011) Autophagy inhibition enhances etoposide-induced cell death in human hepatoma G2 cells. Int J Mol Med 27(4):599–606. doi:10.3892/ijmm.2011.607

    CAS  PubMed  Google Scholar 

  28. Ha JY, Kim JS, Kim SE, Son JH (2014) Simultaneous activation of mitophagy and autophagy by staurosporine protects against dopaminergic neuronal cell death. Neurosci Lett 561:101–106. doi:10.1016/j.neulet.2013.12.064

    Article  CAS  PubMed  Google Scholar 

  29. Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25(34):4798–4811. doi:10.1038/sj.onc.1209608

    Article  CAS  PubMed  Google Scholar 

  30. Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11(9):621–632. doi:10.1038/nrm2952

    Article  CAS  PubMed  Google Scholar 

  31. Rasola A, Bernardi P (2007) The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12(5):815–833. doi:10.1007/s10495-007-0723-y

    Article  CAS  PubMed  Google Scholar 

  32. Li PF, Dietz R, von Harsdorf R (1999) p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J 18(21):6027–6036. doi:10.1093/emboj/18.21.6027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yuan L, Wei S, Wang J, Liu X (2014) Isoorientin induces apoptosis and autophagy simultaneously by reactive oxygen species (ROS)-related p53, PI3K/Akt, JNK, and p38 signaling pathways in HepG2 cancer cells. J Agric Food Chem 62(23):5390–5400. doi:10.1021/jf500903g

    Article  CAS  PubMed  Google Scholar 

  34. Ehrhardt H, Hacker S, Wittmann S, Maurer M, Borkhardt A, Toloczko A et al (2008) Cytotoxic drug-induced, p53-mediated upregulation of caspase-8 in tumor cells. Oncogene 27(6):783–793. doi:10.1038/sj.onc.1210666

    Article  CAS  PubMed  Google Scholar 

  35. Wu HJ, Pu JL, Krafft PR, Zhang JM, Chen S (2015) The molecular mechanisms between autophagy and apoptosis: potential role in central nervous system disorders. Cell Mol Neurobiol 35(1):85–99. doi:10.1007/s10571-014-0116-z

    Article  CAS  PubMed  Google Scholar 

  36. Ikonomidou C, Kaindl AM (2011) Neuronal death and oxidative stress in the developing brain. Antioxid Redox Signal 14(8):1535–1550. doi:10.1089/ars.2010.3581

    Article  CAS  PubMed  Google Scholar 

  37. Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441(2):523–540. doi:10.1042/BJ20111451

    Article  CAS  PubMed  Google Scholar 

  38. Stowe DF, Camara AK (2009) Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 11(6):1373–1414. doi:10.1089/ARS.2008.2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dai C, Tang S, Deng S, Zhang S, Zhou Y, Velkov T, Li J, Xiao X (2015) Lycopene attenuates colistin-induced nephrotoxicity in mice via activation of the Nrf2/HO-1 pathway. Antimicrob Agents Chemother 59(1):579–585. doi:10.1128/AAC.03925-14

    Article  PubMed  Google Scholar 

  40. Marino G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15(2):81–94. doi:10.1038/nrm3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Verschooten L, Barrette K, Van Kelst S, Rubio Romero N, Proby C, De Vos R, Agostinis P, Garmyn M (2012) Autophagy inhibitor chloroquine enhanced the cell death inducing effect of the flavonoid luteolin in metastatic squamous cell carcinoma cells. PLoS One 7(10):e48264. doi:10.1371/journal.pone.0048264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo XL, Li D, Hu F, Song JR, Zhang SS, Deng WJ, Sun K, Zhao QD et al (2012) Targeting autophagy potentiates chemotherapy-induced apoptosis and proliferation inhibition in hepatocarcinoma cells. Cancer Lett 320(2):171–179. doi:10.1016/j.canlet.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  43. Li J, Hou N, Faried A, Tsutsumi S, Takeuchi T, Kuwano H (2009) Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann Surg Oncol 16(3):761–771. doi:10.1245/s10434-008-0260-0

    Article  PubMed  Google Scholar 

  44. Xiong HY, Guo XL, Bu XX, Zhang SS, Ma NN, Song JR, Hu F, Tao SF et al (2010) Autophagic cell death induced by 5-FU in Bax or PUMA deficient human colon cancer cell. Cancer Lett 288(1):68–74. doi:10.1016/j.canlet.2009.06.039

    Article  CAS  PubMed  Google Scholar 

  45. Wu H, Che X, Zheng Q, Wu A, Pan K, Shao A, Wu Q, Zhang J et al (2014) Caspases: a molecular switch node in the crosstalk between autophagy and apoptosis. Int J Biol Sci 10(9):1072–1083. doi:10.7150/ijbs.9719

    Article  PubMed  PubMed Central  Google Scholar 

  46. Altman BJ, Rathmell JC (2009) Autophagy: not good OR bad, but good AND bad. Autophagy 5(4):569–570

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shao A, Wang Z, Wu H, Dong X, Li Y, Tu S, Tang J, Zhao M et al (2014) Enhancement of autophagy by histone deacetylase inhibitor trichostatin a ameliorates neuronal apoptosis after subarachnoid hemorrhage in rats. Mol Neurobiol. doi:10.1007/s12035-014-8986-0

    Google Scholar 

  48. Wang H, Gao N, Li Z, Yang Z, Zhang T (2015) Autophagy alleviates melamine-induced cell death in PC12 cells via decreasing ROS level. Mol Neurobiol. doi:10.1007/s12035-014-9073-2

    Google Scholar 

  49. Tang P, Hou H, Zhang L, Lan X, Mao Z, Liu D, He C, Du H et al (2014) Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats. Mol Neurobiol 49(1):276–287. doi:10.1007/s12035-013-8518-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (award number 31372486). T. V. is supported by a research grant from the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (R01 AI111965). T. V. is also supported by the Australian National Health and Medical Research Council (NHMRC). This study was supported by Chinese Universities Scientific Fund (Award number 2015DY003).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tony Velkov or Xilong Xiao.

Additional information

Dr. Xilong Xiao is the first corresponding author and Dr. Tony Velkov is the co-corresponding author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, C., Tang, S., Velkov, T. et al. Colistin-Induced Apoptosis of Neuroblastoma-2a Cells Involves the Generation of Reactive Oxygen Species, Mitochondrial Dysfunction, and Autophagy. Mol Neurobiol 53, 4685–4700 (2016). https://doi.org/10.1007/s12035-015-9396-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9396-7

Keywords

Navigation