Skip to main content

Advertisement

Log in

An Updated and Comprehensive Meta-Analysis of Association Between Seven Hot Loci Polymorphisms from Eight GWAS and Glioma Risk

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Eight genome-wide association studies (GWASs) found that seven loci (rs2736100, rs4295627, rs4977756, rs498872, rs11979158, rs2252586, rs6010620) polymorphisms could elevate the risk of glioma, one of the most common types of primary brain cancer in adults. However, the replication studies about these seven loci obtained inconsistent results. In order to derive a more accurate estimation about the relationship between the selected single-nucleotide polymorphism (SNP) and susceptibility to glioma, we conducted a meta-analysis containing all eligible published case control studies to evaluate the association. An overall literature search was conducted using the database of PubMed, Science Direct, China national knowledge infrastructure (CNKI), and Embase. Seventeen articles with 25 studies were included in the meta-analysis. Glioma risk (odds ratio, OR; 95 % confidential interval, 95 %CI) was estimated with the random-effect model or the fixed-effects model. STATA 12.0 was applied to analyze all statistical data. Results showed that seven hot loci were all associated with increased risk of glioma (rs2736100, OR = 1.28, 95 %CI = 1.23–1.32; rs4295627, OR = 1.34, 95 %CI = 1.21–1.47; rs4977756, OR = 1.24, 95 %CI = 1.20–1.28; rs498872, OR = 1.24, 95 %CI = 1.15–1.33; rs6010620, OR = 1.29, 95 %CI = 1.24–1.35; rs11979158: OR = 1.18, 95 %CI = 1.10–1.25; rs2252586: OR = 1.18, 95 %CI = 1.10–1.25). Additionally, subgroup analysis by stages of glioma found that variation of rs11979158 had stronger relationship with high-grade (OR = 1.32, 95 %CI = 1.19–1.45) than low-grade glioma (OR = 1.12, 95 % CI = 1.03–1.21). Similarly, stratified analysis of rs2252586 by stages revealed the similar trend, with OR of 1.26 (95 %CI = 1.17–1.35) in high-grade glioma and OR of 1.15 (95 %CI = 1.08–1.22) in low-grade glioma. In summary, the present study showed that mutations of the seven loci could elevate the risk of glioma significantly. However, more other factors that could be related with glioma should be considered in further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249

    Article  PubMed  Google Scholar 

  3. Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109(1):93–108

    Article  PubMed  Google Scholar 

  4. Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61(4):212–236

    Article  PubMed  Google Scholar 

  5. Rousseau A, Mokhtari K, Duyckaerts C (2008) The 2007 WHO classification of tumors of the central nervous system - what has changed? Curr Opin Neurol 21(6):720–727

    Article  PubMed  Google Scholar 

  6. Davis FG, McCarthy BJ (2001) Current epidemiological trends and surveillance issues in brain tumors. Expert Rev Anticancer Ther 1(3):395–401

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Zhang W, Cao WD, Cheng G, Zhang YQ (2012) Glioblastoma multiforme: molecular characterization and current treatment strategy (Review). Exp Ther Med 3(1):9–14

    PubMed  Google Scholar 

  8. Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, Il'yasova D et al (2008) Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 113(7 Suppl):1953–1968

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang H, Liu H, Knauss JL (2013) Associations between three XRCC1 polymorphisms and glioma risk: a meta-analysis. Tumour Biol 34(5):3003–3013

    Article  CAS  PubMed  Google Scholar 

  10. Hu M, Shi H, Xu Z, Liu W (2013) Association between epidermal growth factor gene rs4444903 polymorphism and risk of glioma. Tumour Biol 34(3):1879–1885

    Article  CAS  PubMed  Google Scholar 

  11. Xu C, Yuan L, Tian H, Cao H, Chen S (2013) Association of the MTHFR C677T polymorphism with primary brain tumor risk. Tumour Biol 34(6):3457–3464

    Article  CAS  PubMed  Google Scholar 

  12. He F, Xia Y, Liu H, Li J, Wang C (2013) P53 codon 72 Arg/Pro polymorphism and glioma risk: an updated meta-analysis. Tumour Biol 34(5):3121–3130

    Article  CAS  PubMed  Google Scholar 

  13. Wrensch M, Lee M, Miike R, Newman B, Barger G, Davis R et al (1997) Familial and personal medical history of cancer and nervous system conditions among adults with glioma and controls. Am J Epidemiol 145(7):581–593

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Shete S, Hosking F, Robertson L, Houlston R, Bondy M (2010) Genetic advances in glioma: susceptibility genes and networks. Curr Opin Genet Dev 20(3):239–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Malmer B, Gronberg H, Andersson U, Jonsson BA, Henriksson R (2001) Microsatellite instability, PTEN and p53 germline mutations in glioma families. Acta Oncol 40(5):633–637

    Article  CAS  PubMed  Google Scholar 

  16. Tachibana I, Smith JS, Sato K, Hosek SM, Kimmel DW, Jenkins RB (2000) Investigation of germline PTEN, p53, p16(INK4A)/p14(ARF), and CDK4 alterations in familial glioma. Am J Med Genet 92(2):136–141

    Article  CAS  PubMed  Google Scholar 

  17. Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B et al (2009) Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 41(8):899–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA et al (2009) Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet 41(8):905–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu Y, Shete S, Etzel CJ, Scheurer M, Alexiou G, Armstrong G et al (2010) Polymorphisms of LIG4, BTBD2, HMGA2, and RTEL1 genes involved in the double-strand break repair pathway predict glioblastoma survival. J Clin Oncol 28(14):2467–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiao Y, Decker PA, Rice T, McCoy LS, Smirnov I, Patoka JS et al (2012) SSBP2 variants are associated with survival in glioblastoma patients. Clin Cancer Res 18(11):3154–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rajaraman P, Melin BS, Wang Z, McKean-Cowdin R, Michaud DS, Wang SS et al (2012) Genome-wide association study of glioma and meta-analysis. Hum Genet 131(12):1877–1888

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sanson M, Hosking FJ, Shete S, Zelenika D, Dobbins SE, Ma Y et al (2011) Chromosome 7p11.2 (EGFR) variation influences glioma risk. Hum Mol Genet 20(14):2897–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Walsh KM, Codd V, Smirnov IV, Rice T, Decker PA, Hansen HM et al (2014) Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk. Nat Genet 46(7):731–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang TH, Kon M, Hung JH, Delisi C (2011) Combinations of newly confirmed Glioma-Associated loci link regions on chromosomes 1 and 9 to increased disease risk. BMC Med Genomics 4:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Melin B, Dahlin AM, Andersson U, Wang Z, Henriksson R, Hallmans G et al (2013) Known glioma risk loci are associated with glioma with a family history of brain tumours -- a case-control gene association study. Int J Cancer 132(10):2464–2468

    Article  CAS  PubMed  Google Scholar 

  26. Wang SS, Hartge P, Yeager M, Carreon T, Ruder AM, Linet M et al (2011) Joint associations between genetic variants and reproductive factors in glioma risk among women. Am J Epidemiol 174(8):901–908

    Article  PubMed  PubMed Central  Google Scholar 

  27. Egan KM, Thompson RC, Nabors LB, Olson JJ, Brat DJ, Larocca RV et al (2011) Cancer susceptibility variants and the risk of adult glioma in a US case-control study. J Neurooncol 104(2):535–542

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li S, Jin T, Zhang J, Lou H, Yang B, Li Y et al (2012) Polymorphisms of TREH, IL4R and CCDC26 genes associated with risk of glioma. Cancer Epidemiol 36(3):283–287

    Article  CAS  PubMed  Google Scholar 

  29. Jenkins RB, Wrensch MR, Johnson D, Fridley BL, Decker PA, Xiao Y et al (2011) Distinct germ line polymorphisms underlie glioma morphologic heterogeneity. Cancer Genet 204(1):13–18

    Article  PubMed  PubMed Central  Google Scholar 

  30. Safaeian M, Rajaraman P, Hartge P, Yeager M, Linet M, Butler MA et al (2013) Joint effects between five identified risk variants, allergy, and autoimmune conditions on glioma risk. Cancer Causes Control 24(10):1885–1891

    Article  PubMed  PubMed Central  Google Scholar 

  31. Di Stefano AL, Enciso-Mora V, Marie Y, Desestret V, Labussiere M, Boisselier B et al (2013) Association between glioma susceptibility loci and tumour pathology defines specific molecular etiologies. Neuro Oncology 15(5):542–547

    Article  PubMed  Google Scholar 

  32. Chen H, Chen Y, Zhao Y, Fan W, Zhou K, Liu Y et al (2011) Association of sequence variants on chromosomes 20, 11, and 5 (20q13.33, 11q23.3, and 5p15.33) with glioma susceptibility in a Chinese population. Am J Epidemiol 173(8):915–922

    Article  PubMed  Google Scholar 

  33. Schoemaker MJ, Robertson L, Wigertz A, Jones ME, Hosking FJ, Feychting M et al (2010) Interaction between 5 genetic variants and allergy in glioma risk. Am J Epidemiol 171(11):1165–1173

    Article  PubMed  Google Scholar 

  34. Wei XB, Jin TB, Li G, Geng TT, Zhang JY, Chen CP et al (2014) CCDC26 gene polymorphism and glioblastoma risk in the Han Chinese population. Asian Pac J Cancer Prev 15(8):3629–3633

    Article  PubMed  Google Scholar 

  35. Jin TB, Zhang JY, Li G, Du SL, Geng TT, Gao J et al (2013) RTEL1 and TERT polymorphisms are associated with astrocytoma risk in the Chinese Han population. Tumour Biol 34(6):3659–3666

    Article  CAS  PubMed  Google Scholar 

  36. Rice T, Zheng S, Decker PA, Walsh KM, Bracci P, Xiao Y et al (2013) Inherited variant on chromosome 11q23 increases susceptibility to IDH-mutated but not IDH-normal gliomas regardless of grade or histology. Neuro Oncology 15(5):535–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li G, Jin T, Liang H, Zhang Z, He S, Tu Y et al (2013) RTEL1 tagging SNPs and haplotypes were associated with glioma development. Diagn Pathol 8:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ahmed R, Oborski MJ, Hwang M, Lieberman FS, Mountz JM (2014) Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods. Cancer Manag Res 6:149–170

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Das BR, Tangri R, Ahmad F, Roy A, Patole K (2013) Molecular investigation of isocitrate dehydrogenase gene (IDH) mutations in gliomas: first report of IDH2 mutations in Indian patients. Asian Pac J Cancer Prev 14(12):7261–7264

    Article  PubMed  Google Scholar 

  40. Liang HJ, Yan YL, Liu ZM, Chen X, Peng QL, Wang J et al (2013) Association of XRCC3 Thr241Met polymorphisms and gliomas risk: evidence from a meta-analysis. Asian Pac J Cancer Prev 14(7):4243–4247

    Article  PubMed  Google Scholar 

  41. Ding H, Schertzer M, Wu X, Gertsenstein M, Selig S, Kammori M et al (2004) Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein. Cell 117(7):873–886

    Article  CAS  PubMed  Google Scholar 

  42. Barber LJ, Youds JL, Ward JD, McIlwraith MJ, O’Neil NJ, Petalcorin MI et al (2008) RTEL1 maintains genomic stability by suppressing homologous recombination. Cell 135(2):261–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12(10):1133–1138

    Article  CAS  PubMed  Google Scholar 

  44. Hackett JA, Greider CW (2002) Balancing instability: dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene 21(4):619–626

    Article  CAS  PubMed  Google Scholar 

  45. Wu Y, Tong X, Tang LL, Zhou K, Zhong CH, Jiang S (2014) Associations between the rs6010620 polymorphism in RTEL1 and risk of glioma: a meta-analysis of 20,711 Participants. Asian Pac J Cancer Prev 15(17):7163–7167

    Article  PubMed  Google Scholar 

  46. Wager M, Menei P, Guilhot J, Levillain P, Michalak S, Bataille B et al (2008) Prognostic molecular markers with no impact on decision-making: the paradox of gliomas based on a prospective study. Br J Cancer 98(11):1830–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang L, Wei Q, Wang LE, Aldape KD, Cao Y, Okcu MF et al (2006) Survival prediction in patients with glioblastoma multiforme by human telomerase genetic variation. J Clin Oncol 24(10):1627–1632

    Article  CAS  PubMed  Google Scholar 

  48. Liu Z, Li G, Wei S, Niu J, Wang LE, Sturgis EM et al (2010) Genetic variations in TERT-CLPTM1L genes and risk of squamous cell carcinoma of the head and neck. Carcinogenesis 31(11):1977–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Falchetti ML, Fiorenzo P, Mongiardi MP, Petrucci G, Montano N, Maira G et al (2006) Telomerase inhibition impairs tumor growth in glioblastoma xenografts. Neurol Res 28(5):532–537

    Article  CAS  PubMed  Google Scholar 

  50. Jiang M, Zhu K, Grenet J, Lahti JM (2008) Retinoic acid induces caspase-8 transcription via phospho-CREB and increases apoptotic responses to death stimuli in neuroblastoma cells. Biochim Biophys Acta 1783(6):1055–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Das A, Banik NL, Ray SK (2007) Differentiation decreased telomerase activity in rat glioblastoma C6 cells and increased sensitivity to IFN-gamma and taxol for apoptosis. Neurochem Res 32(12):2167–2183

    Article  CAS  PubMed  Google Scholar 

  52. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S et al (2007) A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 39(8):984–988

    Article  CAS  PubMed  Google Scholar 

  54. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S et al (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39(5):645–649

    Article  CAS  PubMed  Google Scholar 

  55. Kiemeney LA, Thorlacius S, Sulem P, Geller F, Aben KK, Stacey SN et al (2008) Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet 40(11):1307–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fuxe J, Akusjarvi G, Goike HM, Roos G, Collins VP, Pettersson RF (2000) Adenovirus-mediated overexpression of p15INK4B inhibits human glioma cell growth, induces replicative senescence, and inhibits telomerase activity similarly to p16INK4A. Cell Growth Differ 11(7):373–384

    CAS  PubMed  Google Scholar 

  57. Yang RY, Yang KS, Pike LJ, Marshall GR (2010) Targeting the dimerization of epidermal growth factor receptors with small-molecule inhibitors. Chem Biol Drug Des 76(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

  59. Zhou QL, Jiang ZY, Mabardy AS, Del Campo CM, Lambright DG, Holik J et al (2010) A novel pleckstrin homology domain-containing protein enhances insulin-stimulated Akt phosphorylation and GLUT4 translocation in adipocytes. J Biol Chem 285(36):27581–27589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Figure 1

Forest plot for the meta-analysis of the association between rs11979158 mutation and glioma in allelic model. (EPS 671 kb)

High resolution image (GIF 37 kb)

Supplement Figure 2

Forest plot for the meta-analysis of the association between rs2252586 mutation and glioma in allelic model. (EPS 666 kb)

High resolution image (GIF 37 kb)

Supplement Figure 3

Forest plot for the meta-analysis of the association between rs6010620 mutation and glioma in allelic model. (EPS 758 kb)

High resolution image (GIF 53 kb)

Supplement Figure 4

Forest plot for the meta-analysis of the association between rs4977756 mutation and glioma in allelic model. (EPS 770 kb)

High resolution image (GIF 53 kb)

Supplement Figure 5

Forest plot for the meta-analysis of the association between rs498872 mutation and glioma in allelic model. (EPS 766 kb)

High resolution image (GIF 54 kb)

Supplement Figure 6

Forest plot for the meta-analysis of the association between rs2736100 mutation and glioma in allelic model. (EPS 732 kb)

High resolution image (GIF 50 kb)

Supplement Figure 7

Forest plot for the meta-analysis of the association between rs4295627 mutation and glioma in allelic model. (EPS 770 kb)

High resolution image (GIF 55 kb)

Supplement Figure 8

Cumulative meta-analysis of the association between rs11979158 mutation and glioma in allelic model. (EPS 611 kb)

High resolution image (GIF 23 kb)

Supplement Figure 9

Cumulative meta-analysis of the association between rs2252586 mutation and glioma in allelic model. (EPS 485 kb)

High resolution image (GIF 23 kb)

Supplement Figure 10

Cumulative meta-analysis of the association between rs6010620 mutation and glioma in allelic model. (EPS 522 kb)

High resolution image (GIF 34 kb)

Supplement Figure 11

Cumulative meta-analysis of the association between rs4977756 mutation and glioma in allelic model. (EPS 587 kb)

High resolution image (GIF 30 kb)

Supplement Figure 12

Cumulative meta-analysis of the association between rs498872 mutation and glioma in allelic model. (EPS 574 kb)

High resolution image (GIF 34 kb)

Supplement Figure 13

Cumulative meta-analysis of the association between rs2736100 mutation and glioma in allelic model. (EPS 560 kb)

High resolution image (GIF 32 kb)

Supplement Figure 14

Cumulative meta-analysis of the association between rs4295627 mutation and glioma in allelic model. (EPS 595 kb)

High resolution image (GIF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Peng, Y. & Zhao, X. An Updated and Comprehensive Meta-Analysis of Association Between Seven Hot Loci Polymorphisms from Eight GWAS and Glioma Risk. Mol Neurobiol 53, 4397–4405 (2016). https://doi.org/10.1007/s12035-015-9346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9346-4

Keywords

Navigation