Skip to main content

Advertisement

Log in

Cerebral Oedema, Blood–Brain Barrier Breakdown and the Decrease in Na+,K+-ATPase Activity in the Cerebral Cortex and Hippocampus are Prevented by Dexamethasone in an Animal Model of Maple Syrup Urine Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Maple syrup urine disease (MSUD) is a rare metabolic disorder associated with acute and chronic brain dysfunction. This condition has been shown to lead to macroscopic cerebral alterations that are visible on imaging studies. Cerebral oedema is widely considered to be detrimental for MSUD patients; however, the mechanisms involved are still poorly understood. Therefore, we investigated whether acute administration of branched-chain amino acids (BCAA) causes cerebral oedema, modifies the Na+,K+-ATPase activity, affects the permeability of the blood–brain barrier (BBB) and alters the levels of cytokines in the hippocampus and cerebral cortex of 10-day-old rats. Additionally, we investigated the influence of concomitant administration of dexamethasone on the alterations caused by BCAA. Our results showed that the animals submitted to the model of MSUD exhibited an increase in the brain water content, both in the cerebral cortex and in the hippocampus. By investigating the mechanism of cerebral oedema, we discovered an association between H-BCAA and the Na+,K+-ATPase activity and the permeability of the BBB to small molecules. Moreover, the H-BCAA administration increases Il-1β, IL-6 and TNF-α levels in the hippocampus and cerebral cortex, whereas IL-10 levels were decreased in the hippocampus. Interestingly, we showed that the administration of dexamethasone successfully reduced cerebral oedema, preventing the inhibition of Na+,K+-ATPase activity, BBB breakdown and the increase in the cytokines levels. In conclusion, these findings suggest that dexamethasone can improve the acute cerebral oedema and brain injury associated with high levels of BCAA, either through a direct effect on brain capillary Na+,K+-ATPase or through a generalized effect on the permeability of the BBB to all compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Menkes JH, Hurst PL, Craig JM (1954) A new syndrome: progressive familial infantile cerebral dysfunction associated with an unusual urinary substance. Pediatrics 14:462

    CAS  PubMed  Google Scholar 

  2. Dancis J, Hutzler J, Snyderman SE, Cox RP (1972) Enzyme activity in classical and variant forms of maple syrup urine disease. J Pediatr 81:312–320

    Article  CAS  PubMed  Google Scholar 

  3. Chuang DT, Shih VE (2001) Maple syrup urine disease (branched-chain ketoaciduria). In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1971–2005

    Google Scholar 

  4. Treacy E, Clow CL, Reade TR, Chitayat D, Mamer OA, Scriver CR (1992) Maple syrup urine disease: interrelationship between branched-chain amino-, oxo- and hydroxyacids; implications for treatment; associations with CNS dysmyelination. J Inherit Metab Dis 15:121–135

    Article  CAS  PubMed  Google Scholar 

  5. Schönberger S, Schweiger B, Schwahn B, Schwarz M, Wendel U (2004) Dysmyelination in the brain of adolescents and young adults with maple syrup urine disease. Mol Genet Metab 82:69–75

    Article  PubMed  Google Scholar 

  6. Jan W, Zimmerman RA, Wang ZJ, Berry GT, Kaplan PB, Kaye EM (2003) MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology 45:393–399

    Article  PubMed  Google Scholar 

  7. Klee D, Thimm E, Wittsack HJ, Schubert D, Primke R, Pentang G, Schaper J, Mödder U, Antoch A, Wendel U, Cohnen M (2013) Structural white matter changes in adolescents and young adults with maple syrup urine disease. J Inherit Metab Dis 36:945–953

    Article  CAS  PubMed  Google Scholar 

  8. Righini A, Ramenghi LA, Parini R, Triulzi F, Mosca F (2003) Water apparent diffusion coefficient and T2 changes in the acute stage of maple syrup urine disease: evidence of intramyelinic and vasogenic-interstitial edema. J Neuroimaging 13:162–165

    Article  PubMed  Google Scholar 

  9. Strauss KA, Morton DH (2003) Branched-chain ketoacyl dehydrogenase deficiency: maple syrup disease. Curr Treat Options Neurol 5:329–341

    Article  PubMed  Google Scholar 

  10. Strauss KA, Puffenberger EG, Morton DH (2013) Maple syrup urine disease. In: Pagon R, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong C, Smith RJH, Stephens K (eds) Gene reviews. University of Washington, Seattle

    Google Scholar 

  11. Galicich JH, French LA (1961) Use of dexamethasone in the treatment of cerebral edema resulting from brain tumors and brain surgery. Am Pract Dig Treat 12:169–174

    CAS  PubMed  Google Scholar 

  12. Martos A, Cabellos C, Martínez-Lacasa J, Viladrich PF, Gudiol F (1995) Protective effect of dexamethasone and phenytoin in the treatment of experimental pneumococcal meningitis. Enferm Infecc Microbiol Clin 13:146–150

    CAS  PubMed  Google Scholar 

  13. Bertorelli R (1998) MK 801 and dexamethasone reduce both tumor necrosis factor levels and infarct volume after focal cerebral ischemia in the rat brain. Neurosci Lett 246:41–44

    Article  CAS  PubMed  Google Scholar 

  14. Kaal EC, Vecht CJ (2004) The management of brain edema in brain tumors. Curr Opin Oncol 16:593–600

    Article  CAS  PubMed  Google Scholar 

  15. Irazuzta J, Pretzlaff RK, DeCourten-Myers G, Zemlan F, Zingarelli B (2005) Dexamethasone decreases neurological sequelae and caspase activity. Intensive Care Med 31:146–150

    Article  PubMed  Google Scholar 

  16. Bastina ME, Carpenterb TK, Armitageb PA, Sinhab S, Wardlawb JM, Whittleb IR (2006) Effects of dexamethasone on cerebral perfusion and water diffusion in patients with high-grade glioma. AJNR Am J Neuroradiol 27:402–408

    Google Scholar 

  17. Shaikh AK, Mohammad QD, Ullah MA, Ahsan MM, Rahman A, Shakoor MA (2011) Effect of dexamethasone on brain oedema following acute ischemic stroke. Mymensingh Med J 20:450–458

    CAS  PubMed  Google Scholar 

  18. Kostaras X, Cusano F, Kline GA, Roa W, Easaw J (2014) Use of dexamethasone in patients with high-grade glioma: a clinical practice guideline. Curr Oncol 21:e493–e503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nahaczewski AE, Fowler SB, Hariharan S (2004) Dexamethasone therapy in patients with brain tumors—a focus on tapering. J Neurosci Nurs 36:340–343

    Article  PubMed  Google Scholar 

  20. Raslan A, Bhardwaj A (2007) Medical management of cerebral edema. Neurosurg Focus 22(5), E12

    Article  PubMed  Google Scholar 

  21. Romero IA, Radewicz K, Jubin E, Michel CC, Greenwood J, Couraud PO, Adamson P (2003) Changes in cytoskeletal and tight junctional proteins correlate with decreased permeability induced by dexamethasone in cultured rat brain endothelial cells. Neurosci Lett 344:112–116

    Article  CAS  PubMed  Google Scholar 

  22. Weksler BB, Subileau E, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greewnrood J, Romero IA, Couraud PO (2005) Blood brain barrier specific properties of a human adult brain endothelial cell line. FASEB J 19:1872–1874

    CAS  PubMed  Google Scholar 

  23. Calabria AR, Weidenfeller C, Jones AR, de Vries HE, Shusta EV (2006) Puromycin-purified rat brain microvascular endothelial cell cultures exhibit improved barrier properties in response to glucocorticoid induction. J Neurochem 97:922–933

    Article  CAS  PubMed  Google Scholar 

  24. Förster C (2008) Tight junctions and the modulation of barrier function ion disease. Histochem Cell Biol 130:55–70

    Article  PubMed  PubMed Central  Google Scholar 

  25. Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M (1995) Immunosuppression by glucocorticoids: inhibition of NF-κB activity through induction of IκB synthesis. Science 270:286–290

    Article  CAS  PubMed  Google Scholar 

  26. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

    CAS  PubMed  Google Scholar 

  27. Raison CL, Miller AH (2003) When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry 160:1554–1565

    Article  PubMed  Google Scholar 

  28. Demopoulos HB, Milvy P, Kakari S, Ransohoff J (1972) Molecular aspects of membrane structure in cerebral edema. In: Reulen H, Schitrmann K (eds) Steroids and brain edema. Springer-Verlag, New York, pp 29–39

    Chapter  Google Scholar 

  29. Hall ED, Braughler JM (1982) Glucocorticoid mechanisms in acute spinal cord injury: a review and therapeutic rationale. Surg Neurol 18:320–327

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki J, Imaizumi S, Kayama T, Yushimoto T (1985) Chemiluminescence in hypoxic brain—the second report: cerebral protective effect of mannitol, vitamin E and glucocorticoid. Stroke 16:695–700

    Article  CAS  PubMed  Google Scholar 

  31. Rajashree S, Puvanakrishnan R (1998) Dexamethasone induced alterations in enzymatic and nonenzymatic antioxidant status in heart and kidney of rats. Mol Cell Biochem 181:77–85

    Article  CAS  PubMed  Google Scholar 

  32. Kim CR, Sadowska GB, Petersson KH, Merino M, Sysyn GD, Padbury JF, Stonestreet BS (2006) Effects of postnatal steroids on Na+/K+-ATPase activity and alpha1- and beta1-subunit protein expression in the cerebral cortex and renal cortex of newborn lambs. Reprod Fertil Dev 18(4):413–423

    Article  CAS  PubMed  Google Scholar 

  33. Hatou S, Yamada M, Mochizuki H, Shiraishi A, Joko T, Nishida T (2009) The effects of dexamethasone on the Na, K-ATPase activity and pump function of corneal endothelial cells. Curr Eye Res 34:347–354

    Article  CAS  PubMed  Google Scholar 

  34. Hatou S (2011) Hormonal regulation of Na+/K+-dependent ATPase activity and pump function in corneal endothelial cells. Cornea 30:S60–S66

    Article  PubMed  Google Scholar 

  35. Barichello T, Santos AL, Silvestre C, Generoso JS, Cipriano AL, Petronilho F, Dal-Pizzol F, Comim CM, Quevedo J (2011) Dexamethasone treatment reverses cognitive impairment but increases brain oxidative stress in rats submitted to pneumococcal meningitis. Oxidative Med Cell Longev 2011:173035

    Article  Google Scholar 

  36. Bridi R, Fontella FU, Pulrolnik V, Braun CA, Zorzi GK, Coelho D, Wajner M, Vargas CR, Dutra-Filho CS (2006) A chemically-induced acute model of maple syrup urine disease in rats for neurochemical studies. J Neurosci Methods 155:224–230

    Article  CAS  PubMed  Google Scholar 

  37. Durmaz R, Ertilav K, Akyuz F, Kanbak G, Bildirici K, Tel E (2003) Lazaroid U-74389G attenuates edema in rat brain subjected to post-ischemic reperfusion injury. J Neurol Sci 215:87–93

    Article  CAS  PubMed  Google Scholar 

  38. Wyse ATS, Streck EL, Worm P, Wajner A, Ritter F, Netto CA (2000) Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem Res 25:971–975

    Article  CAS  Google Scholar 

  39. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  CAS  PubMed  Google Scholar 

  40. Liu D-Z, Ander BP, Xu H, Shen Y, Kaur P, Deng W, Sharp FR (2010) Blood-brain barrier breakdown and repair by Src after thrombin-induced injury. Ann Neurol 67:526–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coimbra RS, Loquet G, Leib SL (2007) Limited efficacy of adjuvant therapy with dexamethasone in preventing hearing loss due to experimental pneumococcal meningitis in the infant rat. Pediatr Res 62:291–294

    Article  CAS  PubMed  Google Scholar 

  42. Yokoo H, Chiba S, Tomita K, Takashina M, Sagara H, Yagisita S, Takano Y, Hattori Y (2012) Neurodegenerative evidence in mice brains with cecal ligation and puncture-induced sepsis: preventive effect of the free radical scavenger edaravone. PLoS One 7, e51539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Belayev L, Busto R, Zhao W, Ginsberg MD (1996) Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res 739:88–96

    Article  CAS  PubMed  Google Scholar 

  44. Uyama O, Okamura N, Yanase M, Narita M, Kawabata K, Sugita M (1988) Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J Cereb Blood Flow Metab 8:282–284

    Article  CAS  PubMed  Google Scholar 

  45. Brismar J, Aqeel A, Brismar G, Coates R, Gascon G, Ozand P (1990) Maple syrup urine disease: findings on CT and MR scans of the brain in 10 infants. AJNR Am J Neuroradiol 11:1219–1228

    CAS  PubMed  Google Scholar 

  46. Klatzo I (1987) Pathophysiological aspects of brain edema. Acta Neuropathol 72:236–239

    Article  CAS  PubMed  Google Scholar 

  47. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  48. Sandoval KE, Witt KA (2008) Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 32:200–219

    Article  CAS  PubMed  Google Scholar 

  49. Mishra OP, Delivoria-Papadopoulos M, Cahillane G, Wagerle LC (1989) Lipid peroxidation as the mechanism of modification of the affinity of the Na+, K+-ATPase active sites for ATP, K1, Na1, and strophanthidin in vitro. Neurochem Res 14:845–851

    Article  CAS  PubMed  Google Scholar 

  50. Lees GJ (1991) Inhibition of sodium-potassium-ATPase: a potentially ubiquitous mechanism contributing to central nervous system neuropathology. Brain Res Rev 16:283–300

    Article  CAS  PubMed  Google Scholar 

  51. Viani P, Cervato G, Fiorilli A, Cestaro B (1991) Age-related differences in synaptosomal peroxidative damage and membrane properties. J Neurochem 56:253–258

    Article  CAS  PubMed  Google Scholar 

  52. de Vries HE, Blom-Roosemalen MC, van Oosten M, de Boer AG, van Berkel TJ, Breimer DD, Kuiper J (1996) The influence of cytokines on the integrity of the blood–brain barrier in vitro. J Neuroimmunol 64:37–43

    Article  PubMed  Google Scholar 

  53. Banks WA (2005) Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharm Des 11:973–984

    Article  CAS  PubMed  Google Scholar 

  54. Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672

    Article  CAS  PubMed  Google Scholar 

  55. Pun PB, Lu J, Moochhala S (2009) Involvement of ROS in BBB dysfunction. Free Radic Res 43:348–364

    Article  CAS  PubMed  Google Scholar 

  56. Fontella FU, Gassen E, Pulrolni V, Wannmacher CMD, Klein AB, Wajner M, Dutra-Filho CS (2002) Stimulation of lipid peroxidation in vitro in rat brain by the metabolites accumulating in maple syrup urine disease. Metab Brain Dis 17:47–54

    Article  CAS  PubMed  Google Scholar 

  57. Bridi R, Araldi J, Sgarbi MB, Testa CG, Durigon K, Wajner M, Dutra-Filho CS (2003) Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int J Dev Neurosci 21:327–332

    Article  CAS  PubMed  Google Scholar 

  58. Bridi R, Latini A, Braun CA, Zorzi GK, Wajner M, Lissi EG, Dutra-Filho CS (2005) Evaluation of the mechanisms involved in leucine induced oxidative damage in cerebral cortex of young rats. Free Radic Res 39:71–79

    Article  CAS  PubMed  Google Scholar 

  59. Mescka C, Moraes T, Rosa A, Mazzola P, Piccoli B, Jacques C, Dalazen G, Coelho J, Cortes M, Terra M, Regla Vargas C, Dutra-Filho CS (2011) In vivo neuroprotective effect of L-carnitine against oxidative stress in maple syrup urine disease. Metab Brain Dis 26:21–28

    Article  CAS  PubMed  Google Scholar 

  60. de Franceschi ID, Rieger E, Vargas AP, Rojas DB, Campos AG, Rech VC, Feksa LR, Wannmacher CM (2013) Effect of leucine administration to female rats during pregnancy and lactation on oxidative stress and enzymes activities of phosphoryltransfer network in cerebral cortex and hippocampus of the offspring. Neurochem Res 38:632–643

    Article  PubMed  Google Scholar 

  61. Barschak AG, Sitta A, Deon M, Olivera MH, Haeser A, Dutra-Filho CS, Wajner M, Vargas CR (2006) Evidence that oxidative stress in increased in plasma from patients with maple syrup urine disease. Metab Brain Dis 21:279–286

    Article  CAS  PubMed  Google Scholar 

  62. Scaini G, Jeremias IC, Morais MO, Borges GD, Munhoz BP, Leffa DD, Andrade VM, Schuck PF, Ferreira GC, Streck EL (2012) DNA damage in an animal model of maple syrup urine disease. Mol Genet Metab 106:169–174

    Article  CAS  PubMed  Google Scholar 

  63. Mescka CP, Guerreiro G, Donida B, Marchetti D, Wayhs CA, Ribas GS, Coitinho AS, Wajner M, Dutra-Filho CS, Vargas CR (2015) Investigation of inflammatory profile in MSUD patients: benefit of L-carnitine supplementation. Metab Brain Dis. doi:10.1007/s11011-015-9686-9

  64. Calder PC (2006) Branched-chain amino acids and immunity. J Nutr 136:288S–293S

    CAS  PubMed  Google Scholar 

  65. Sgaravati AM, Rosa RB, Schuck PF, Ribeiro CAJ, Wannmacher CMD, Wyse ATS, Dutra-Filho CS, Wajner M (2003) Inhibition of brain energy metabolism by the a-keto acids accumulating in maple syrup urine disease. Biochim Biophys Acta 1639:232–238

    Article  Google Scholar 

  66. Pilla C, Cardozo RF, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2003) Creatine kinase activity from rat brain is inhibited by branched-chain amino acids in vitro. Neurochem Res 28:675–679

    Article  CAS  PubMed  Google Scholar 

  67. Ribeiro CA, Sgaravatti AM, Rosa RB, Schuck PF, Grando V, Schmidt AL, Ferreira GC, Perry ML, Dutra-Filho CS, Wajner M (2008) Inhibition of brain energy metabolism by the branched-chain amino acids accumulating in maple syrup urine disease. Neurochem Res 33:114–124

    Article  CAS  PubMed  Google Scholar 

  68. Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajner M (2010) Alpha-ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res 1324:75–84

    Article  CAS  PubMed  Google Scholar 

  69. van de Beek D, de Gans J, McIntyre P, Prasad K (2007) Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev 24:4405

    Google Scholar 

  70. Celsi G, Nishi A, Akusjarvi G, Aperia A (1991) Abundance of Na(+)-K(+)-ATPase mRNA is regulated by glucocorticoid hormones in infant rat kidneys. Am J Physiol 260:F192–F197

    CAS  PubMed  Google Scholar 

  71. Celsi G, Stahl J, Wang ZM, Nishi A (1992) Adrenocorticoid regulation of Na+, K(+)-ATPase in adult rat kidney: effects on post-translational processing and mRNA abundance. Acta Physiol Scand 145:85–91

    Article  CAS  PubMed  Google Scholar 

  72. Devarajan P, Benz EJ Jr (2000) Translational regulation of Na-K-ATPase subunit mRNAs by glucocorticoids. Am J Physiol Ren Physiol 279:F1132–F1138

    CAS  Google Scholar 

  73. Yufu K, Itoh T, Edamatsu R, Mori A, Hirakawa M (1993) Effect of hyperbaric oxygenation on the Na+, K+-ATPase and membrane fluidity of cerebrocortical membranes after experimental subarachnoid hemorrhage. Neurochem Res 16:1033–1039

    Article  Google Scholar 

  74. Tsai CC, Kao SC, Cheng CY, Kau HC, Hsu WM, Lee CF, Wei YH (2007) Oxidative stress change by systemic corticosteroid treatment among patients having active graves ophthalmopathy. Arch Ophthalmol 125:1652–1656

    Article  CAS  PubMed  Google Scholar 

  75. Lozovoy MA, Simão AN, Panis C, Rotter MA, Reiche EM, Morimoto HK, Lavado E, Cecchini R, Dichi I (2011) Oxidative stress is associated with liver damage, inflammatory status, and corticosteroid therapy in patients with systemic lupus erythematosus. Lupus 20:1250–1259

    Article  CAS  PubMed  Google Scholar 

  76. Seven A, Aslan M, Incir S, Altintas A (2013) Evaluation of oxidative and nitrosative stress in relapsing remitting multiple sclerosis: effect of corticosteroid therapy. Folia Neuropathol 51:58–64

    Article  CAS  PubMed  Google Scholar 

  77. Förster C, Silwedel C, Golenhofen N, Burek M, Kietz S, Mankertz J, Drenckhahn D (2005) Occludin as direct target for glucocorticoid-induced improvement of blood–brain barrier properties in a murine in vitro system. J Physiol Lond 565:475–486

    Article  PubMed  PubMed Central  Google Scholar 

  78. Weidenfeller C, Schrot S, Zozulya A, Galla HJ (2005) Murine brain capillary endothelial cells exhibit improved barrier properties under the influence of hydrocortisone. Brain Res 1053:162–174

    Article  CAS  PubMed  Google Scholar 

  79. Underwood JL, Murphy CG, Chen J, Franse-Carman L, Wood I, Epstein DL, Alvarado JA (1999) Glucocorticoids regulate transendothelial fluid flow resistance and formation of intercellular junctions. Am J Physiol 277:C330–C342

    CAS  PubMed  Google Scholar 

  80. Stelwagen K, McFadden HA, Demmer J (1999) Prolactin, alone or in combination with glucocorticoids, enhances tight junction formation and expression of the tight junction protein occludin in mammary cells. Mol Cell Endocrinol 156:55e61

    Article  Google Scholar 

  81. Gelati M, Corsini E, Dufour A, Massa G, Giombini S, Solero CL, Salmaggi A (2000) High-dose methylprednisolone reduces cytokine-induced adhesion molecules on human brain endothelium. Can J Neurol Sci 27:241–244

    Article  CAS  PubMed  Google Scholar 

  82. Sloka JS, Stefanelli M (2005) The mechanism of action of methylprednisolone in the treatment of multiple sclerosis. Mult Scler 11:425–432

    Article  CAS  PubMed  Google Scholar 

  83. Kim H, Lee JM, Park JS, Jo SA, Kim YO, Kim CW, Jo I (2008) Dexamethasone coordinately regulates angiopoietin-1 and VEGF: a mechanism of glucocorticoid-induced stabilization of blood-brain barrier. Biochem Biophys Res Commun 372:243–248

    Article  PubMed  Google Scholar 

  84. Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS Jr (1995) Role of transcriptional activation of IκBα in mediation of immunosuppression by glucocorticoids. Science 270:283–286

    Article  CAS  PubMed  Google Scholar 

  85. Baeuerle PA (1991) The inducible transcription activator NF-κΒ: regulation by distinct protein subunits. Biochim Biophys Acta 1072:63–80

    CAS  PubMed  Google Scholar 

  86. Grilli M, Chiu JJ, Lenardo MJ (1993) NF-κB and Rel: participants in a multiform transcriptional regulatory system. Int Rev Cytol 143:1–62

    Article  CAS  PubMed  Google Scholar 

  87. Grove M, Plumb M (1993) C/EBP, NF-κB, and c-Ets family members and transcriptional regulation of the cell-specific and inducible macrophage inflammatory protein 1 alpha immediate-early gene. Mol Cell Biol 13:5276–5289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wolpe SD, Cerami A (1989) Macrophage inflammatory protein 1 and 2: members of a novel superfamily of cytokines. FASEB J 3:2565–2573

    CAS  PubMed  Google Scholar 

  89. Shoji S, Pennington RJ (1977) The effect of cortisone on protein breakdown and synthesis in rat skeletal muscle. Mol Cell Endocrinol 6:159–169

    Article  CAS  PubMed  Google Scholar 

  90. Rannels DE, Rannels SR, Li JB, Pegg AE, Morgan HE, Jefferson LS (1980) Effects of glucocorticoids on peptide chain initiation in heart and skeletal muscle. Adv Myocardiol 1:493–501

    CAS  PubMed  Google Scholar 

  91. Kayali AG, Young VR, Goodman MN (1987) Sensitivity of myofibrillar proteins to glucocorticoid-induced muscle proteolysis. Am J Physiol 252:E621–E626

    CAS  PubMed  Google Scholar 

  92. Hickson RC, Czerwinski SM, Wegrzyn LE (1995) Glutamine prevents downregulation of myosin heavy chain synthesis and muscle atrophy from glucocorticoids. Am J Physiol 268:E730–E734

    CAS  PubMed  Google Scholar 

  93. Auclair D, Garrel DR, Chaouki Zerouala A, Ferland LH (1997) Activation of the ubiquitin pathway in rat skeletal muscle by catabolic doses of glucocorticoids. Am J Physiol 272:C1007–C1016

    CAS  PubMed  Google Scholar 

  94. Wang X, Jurkovitz C, Price SR (1997) Regulation of branched-chain ketoacid dehydrogenase flux by extracellular pH and glucocorticoids. Am J Physiol Cell Physiol 272:C2031–C2036

    CAS  Google Scholar 

  95. Wang X, Chinsky JM, Costeas PA, Price SR (2001) Acidification and glucocorticoids independently regulate branched-chain alpha-ketoacid dehydrogenase subunit genes. Am J Physiol Cell Physiol 280:C1176–C1183

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Programa de Pós-graduação em Ciências da Saúde–Universidade do Extremo Sul Catarinense (UNESC), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Compliance with Ethical Standards

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the article is not currently being considered for publication by any other print or electronic journal.

We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing, we confirm that we have followed the regulations of our institutions concerning intellectual property. We further confirm that any aspect of the work covered in this manuscript that has involved experimental animals has been conducted with the ethical approval of all relevant bodies and that such approvals are acknowledged within the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio L. Streck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, L., Galant, L.S., Dall’Igna, D.M. et al. Cerebral Oedema, Blood–Brain Barrier Breakdown and the Decrease in Na+,K+-ATPase Activity in the Cerebral Cortex and Hippocampus are Prevented by Dexamethasone in an Animal Model of Maple Syrup Urine Disease. Mol Neurobiol 53, 3714–3723 (2016). https://doi.org/10.1007/s12035-015-9313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9313-0

Keywords

Navigation