Skip to main content
Log in

Lead Exposure Impairs Hippocampus Related Learning and Memory by Altering Synaptic Plasticity and Morphology During Juvenile Period

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Lead (Pb) is an environmental neurotoxic metal. Pb exposure may cause neurobehavioral changes, such as learning and memory impairment, and adolescence violence among children. Previous animal models have largely focused on the effects of Pb exposure during early development (from gestation to lactation period) on neurobehavior. In this study, we exposed Sprague-Dawley rats during the juvenile stage (from juvenile period to adult period). We investigated the synaptic function and structural changes and the relationship of these changes to neurobehavioral deficits in adult rats. Our results showed that juvenile Pb exposure caused fear-conditioned memory impairment and anxiety-like behavior, but locomotion and pain behavior were indistinguishable from the controls. Electrophysiological studies showed that long-term potentiation induction was affected in Pb-exposed rats, and this was probably due to excitatory synaptic transmission impairment in Pb-exposed rats. We found that NMDA and AMPA receptor-mediated current was inhibited, whereas the GABA synaptic transmission was normal in Pb-exposed rats. NR2A and phosphorylated GluR1 expression decreased. Moreover, morphological studies showed that density of dendritic spines declined by about 20 % in the Pb-treated group. The spine showed an immature form in Pb-exposed rats, as indicated by spine size measurements. However, the length and arborization of dendrites were unchanged. Our results suggested that juvenile Pb exposure in rats is associated with alterations in the glutamate receptor, which caused synaptic functional and morphological changes in hippocampal CA1 pyramidal neurons, thereby leading to behavioral changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  2. Nevin R (2009) Trends in preschool lead exposure, mental retardation, and scholastic achievement: association or causation. Environ Res 109(3):301–310

    Article  CAS  PubMed  Google Scholar 

  3. Carpenter DO, Nevin R (2010) Environmental causes of violence. Physiol Behav 99(2):260–268

    Article  CAS  PubMed  Google Scholar 

  4. Hunt PS, Jacobson SE, Torok EJ (2009) Deficits in trace fear conditioning in a rat model of fetal alcohol exposure: dose-response and timing effects. Alcohol 43(6):465–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jaako-Movits K, Zharkovsky T, Romantchik O et al (2005) Developmental lead exposure impairs contextual fear conditioning and reduces adult hippocampal neurogenesis in the rat brain. Int J Dev Neurosci 23(7):627–635

    Article  CAS  PubMed  Google Scholar 

  6. Barbosa AC, Kim MS, Ertunc M et al (2008) MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. Proc Natl Acad Sci U S A 105(27):9391–9396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Trinchese F, Fa M, Liu S et al (2008) Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease. J Clin Invest 118(8):2796–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429(6993):761–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 24:1071–1089

    Article  CAS  PubMed  Google Scholar 

  10. Cingolani LA, Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 9(5):344–356

    Article  CAS  PubMed  Google Scholar 

  11. Routh BN, Johnston D, Harris K, Chitwood RA (2009) Anatomical and electrophysiological comparison of CA1 pyramidal neurons of the rat and mouse. J Neurophysiol 102(4):2288–2302

    Article  PubMed  PubMed Central  Google Scholar 

  12. Megias M, Emri Z, Freund TF, Gulyas AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102(3):527–540

    Article  CAS  PubMed  Google Scholar 

  13. Lang S, Kroll A, Lipinski SJ et al (2009) Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex. Eur J Neurosci 29(4):823–832

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gasparini S, Saviane C, Voronin LL, Cherubini E (2000) Silent synapses in the developing hippocampus: lack of functional AMPA receptors or low probability of glutamate release. Proc Natl Acad Sci U S A 97(17):9741–9746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bouchard MF, Bellinger DC, Weuve J et al (2009) Blood lead levels and major depressive disorder, panic disorder, and generalized anxiety disorder in US young adults. Arch Gen Psychiatry 66(12):1313–1319

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bannerman DM, Sprengel R, Sanderson DJ et al (2014) Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 15(3):181–192

    Article  CAS  PubMed  Google Scholar 

  17. Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5(2):97–107

    Article  CAS  PubMed  Google Scholar 

  18. Braga MF, Pereira EF, Albuquerque EX (1999) Nanomolar concentrations of lead inhibit glutamatergic and GABAergic transmission in hippocampal neurons. Brain Res 826(1):22–34

    Article  CAS  PubMed  Google Scholar 

  19. Tang M, Luo L, Zhu D et al (2009) Muscarinic cholinergic modulation of synaptic transmission and plasticity in rat hippocampus following chronic lead exposure. Naunyn Schmiedebergs Arch Pharmacol 379(1):37–45

    Article  CAS  PubMed  Google Scholar 

  20. Maffei A, Nelson SB, Turrigiano GG (2004) Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nat Neurosci 7(12):1353–1359

    Article  CAS  PubMed  Google Scholar 

  21. Liu MC, Liu XQ, Wang W et al (2012) Involvement of microglia activation in the lead induced long-term potentiation impairment. PLoS One 7(8), e43924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Domercq M, Vazquez-Villoldo N, Matute C (2013) Neurotransmitter signaling in the pathophysiology of microglia. Front Cell Neurosci 7:49

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu M, Li J, Dai P et al (2015) Microglia activation regulates GluR1 phosphorylation in chronic unpredictable stress-induced cognitive dysfunction. Stress 18(1):96–106

    Article  CAS  PubMed  Google Scholar 

  24. Guilarte TR, McGlothan JL (1998) Hippocampal NMDA receptor mRNA undergoes subunit specific changes during developmental lead exposure. Brain Res 790(1-2):98–107

    Article  CAS  PubMed  Google Scholar 

  25. Neal AP, Worley PF, Guilarte TR (2011) Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition. Neurotoxicology 32(2):281–289

    Article  CAS  PubMed  Google Scholar 

  26. Esteban JA, Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R (2003) PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 6(2):136–143

    Article  CAS  PubMed  Google Scholar 

  27. Benke TA, Luthi A, Isaac JT, Collingridge GL (1998) Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393(6687):793–797

    Article  CAS  PubMed  Google Scholar 

  28. Luthi A, Wikstrom MA, Palmer MJ et al (2004) Bi-directional modulation of AMPA receptor unitary conductance by synaptic activity. BMC Neurosci 5:44

    Article  PubMed  PubMed Central  Google Scholar 

  29. Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399(6731):66–70

    Article  CAS  PubMed  Google Scholar 

  30. Maletic-Savatic M, Malinow R, Svoboda K (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283(5409):1923–1927

    Article  CAS  PubMed  Google Scholar 

  31. Tian L, Stefanidakis M, Ning L et al (2007) Activation of NMDA receptors promotes dendritic spine development through MMP-mediated ICAM-5 cleavage. J Cell Biol 178(4):687–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ultanir SK, Kim JE, Hall BJ, Deerinck T, Ellisman M, Ghosh A (2007) Regulation of spine morphology and spine density by NMDA receptor signaling in vivo. Proc Natl Acad Sci U S A 104(49):19553–19558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen BS, Thomas EV, Sanz-Clemente A, Roche KW (2011) NMDA receptor-dependent regulation of dendritic spine morphology by SAP102 splice variants. J Neurosci 31(1):89–96

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fischer M, Kaech S, Wagner U, Brinkhaus H, Matus A (2000) Glutamate receptors regulate actin-based plasticity in dendritic spines. Nat Neurosci 3(9):887–894

    Article  CAS  PubMed  Google Scholar 

  35. Hu F, Xu L, Liu ZH, Ge MM, Ruan DY, Wang HL (2014) Developmental lead exposure alters synaptogenesis through inhibiting canonical Wnt pathway in vivo and in vitro. PLoS One 9(7), e101894

    Article  PubMed  PubMed Central  Google Scholar 

  36. Munoz FJ, Godoy JA, Cerpa W, Poblete IM, Huidobro-Toro JP, Inestrosa NC (2014) Wnt-5a increases NO and modulates NMDA receptor in rat hippocampal neurons. Biochem Biophys Res Commun 444(2):189–194

    Article  CAS  PubMed  Google Scholar 

  37. Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59(6):882–901

    Article  CAS  PubMed  Google Scholar 

  38. Schulz PE, Cook EP, Johnston D (1994) Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J Neurosci 14(9):5325–5337

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key National Scientific Foundation of China (#81230063); National Basic Research Program of China (973 Program, #2012CB525002); National Key Technology Support Program (#2014BAI12B04); National Scientific Foundation of China (#81302451, #81273101, #81472942, and #81402650); Program for Changjiang Scholars (T2011153) and Innovative Research Team in University (PCSIRT); and Shaanxi science and technology coordinating innovative project (2011KTCL03-19).

Conflict of Interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Gao Zhao or Wen-Jing Luo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(GIF 30 kb)

High Resolution Image (TIFF 1886 kb)

ESM 2

(DOC 24 kb)

ESM 3

(GIF 263 kb)

High Resolution Image (TIFF 5417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Guan, RL., Liu, MC. et al. Lead Exposure Impairs Hippocampus Related Learning and Memory by Altering Synaptic Plasticity and Morphology During Juvenile Period. Mol Neurobiol 53, 3740–3752 (2016). https://doi.org/10.1007/s12035-015-9312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9312-1

Keywords

Navigation