Skip to main content

Advertisement

Log in

Thrombomodulin and High-Sensitive C-Reactive Protein Levels in Blood Correlate with the Development of Cerebral Infarction Among Asians

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Our meta-analysis was designed to obtain the correlation between thrombomodulin (TM) and high-sensitive C-reactive protein (hs-CRP) levels and the development of cerebral infarction (CI). Case–control studies relevant to the role plasma TM levels and serum hs-CRP levels in the development of CI were retrieved both electronically and manually and further screened according to a predetermined inclusion and exclusion criteria. All enrolled studies were analyzed for meta-regression analyses, sensitivity analyses, and assessments of publication bias. Comprehensive Meta-analysis 2.0 software (CMA 2.0) was used for statistical analysis. A total of 359 studies were initially retrieved, and 13 studies were eventually recruited into our meta-analysis with a total of 881 CI patients (plasma TM levels: n = 513; serum hs-CRP levels: n = 368) and 1067 healthy controls. The results of our meta-analysis suggested that plasma TM levels and serum hs-CRP levels in CI patients were significantly higher than those in healthy controls. In conclusion, increased plasma TM levels and serum hs-CRP levels in CI patients were associated with the development of CI in Asians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang B, Gao C, Hou Q et al (2012) Different independent susceptibility markers for first-ever cerebral infarction and myocardial infarction in young patients. J Neurol 259:1420–1425

    Article  CAS  PubMed  Google Scholar 

  2. Towfighi A, Saver JL (2011) Stroke declines from third to fourth leading cause of death in the United States: historical perspective and challenges ahead. Stroke 42:2351–2355

    Article  PubMed  Google Scholar 

  3. Tuttolomondo A, Di Raimondo D, Pecoraro R et al (2012) Inflammation in ischemic stroke subtypes. Curr Pharm Des 18:4289–4310

    Article  CAS  PubMed  Google Scholar 

  4. Sen S, Rabinstein AA, Elkind MS et al (2012) Recent developments regarding human immunodeficiency virus infection and stroke. Cerebrovasc Dis 33:209–218

    Article  CAS  PubMed  Google Scholar 

  5. Zhang XH, Lei H, Liu AJ et al (2011) Increased oxidative stress is responsible for severer cerebral infarction in stroke-prone spontaneously hypertensive rats. CNS Neurosci Ther 17:590–598

    Article  CAS  PubMed  Google Scholar 

  6. Naess H, Waje-Andreassen U (2010) Review of long-term mortality and vascular morbidity amongst young adults with cerebral infarction. Eur J Neurol 17:17–22

    Article  CAS  PubMed  Google Scholar 

  7. Xu X, Li X, Li J et al (2010) Meta-analysis of association between variation in the PDE4D gene and ischemic cerebral infarction risk in Asian populations. Neurogenetics 11:327–333

    Article  PubMed  Google Scholar 

  8. Navi BB, Singer S, Merkler AE et al (2014) Cryptogenic subtype predicts reduced survival among cancer patients with ischemic stroke. Stroke 45:2292–2297

    Article  PubMed  PubMed Central  Google Scholar 

  9. O’Donnell MJ, Xavier D, Liu L et al (2010) Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case–control study. Lancet 376:112–123

    Article  PubMed  Google Scholar 

  10. Camerlingo M, Valente L, Tognozzi M et al (2011) C-reactive protein levels in the first three hours after acute cerebral infarction. Int J Neurosci 121:65–68

    Article  CAS  PubMed  Google Scholar 

  11. Whiteley W, Chong WL, Sengupta A et al (2009) Blood markers for the prognosis of ischemic stroke: a systematic review. Stroke 40:e380–e389

    Article  PubMed  Google Scholar 

  12. Benlakhal F, Mura T, Schved JF et al (2011) A retrospective analysis of 157 surgical procedures performed without replacement therapy in 83 unrelated factor VII-deficient patients. J Thromb Haemost 9:1149–1156

    Article  CAS  PubMed  Google Scholar 

  13. Jiang R, Weingart J, Zhang H et al (2012) End-point immobilization of recombinant thrombomodulin via sortase-mediated ligation. Bioconjug Chem 23:643–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Su YJ, Liao SC, Cheng BC et al (2013) Increasing high-sensitive C-reactive protein level predicts peritonitis risk in chronic peritoneal dialysis patients. BMC Nephrol 14:185

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kornej J, Reinhardt C, Kosiuk J et al (2012) Response of high-sensitive C-reactive protein to catheter ablation of atrial fibrillation and its relation with rhythm outcome. PLoS One 7, e44165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song IU, Kim JS, Kim YI et al (2009) Relationship between high-sensitivity C-reactive protein and clinical functional outcome after acute ischemic stroke in a Korean population. Cerebrovasc Dis 28:545–550

    Article  CAS  PubMed  Google Scholar 

  17. Goicoechea M, de Vinuesa SG, Verdalles U et al (2010) Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 5:1388–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martins RA, Neves AP, Coelho-Silva MJ et al (2010) The effect of aerobic versus strength-based training on high-sensitivity C-reactive protein in older adults. Eur J Appl Physiol 110:161–169

    Article  CAS  PubMed  Google Scholar 

  19. Makita S, Nakamura M, Satoh K et al (2009) Serum C-reactive protein levels can be used to predict future ischemic stroke and mortality in Japanese men from the general population. Atherosclerosis 204:234–238

    Article  CAS  PubMed  Google Scholar 

  20. Tu WJ, Zhao SJ, Liu TG et al (2013) Combination of high-sensitivity C-reactive protein and homocysteine predicts the short-term outcomes of Chinese patients with acute ischemic stroke. Neurol Res 35:912–921

    Article  CAS  PubMed  Google Scholar 

  21. Olivot JM, Labreuche J, De Broucker T et al (2008) Thrombomodulin gene polymorphisms in brain infarction and mortality after stroke. J Neurol 255:514–519

    Article  CAS  PubMed  Google Scholar 

  22. Liao JK (2009) Genetically elevated C-reactive protein and ischemic vascular disease. Curr Atheroscler Rep 11:245

    Article  PubMed  Google Scholar 

  23. Kuwashiro T, Ago T, Kamouchi M et al (2014) Significance of plasma adiponectin for diagnosis, neurological severity and functional outcome in ischemic stroke—Research for Biomarkers in Ischemic Stroke (REBIOS). Metabolism 63:1093–1103

    Article  CAS  PubMed  Google Scholar 

  24. Chen H, Manning AK, Dupuis J (2012) A method of moments estimator for random effect multivariate meta-analysis. Biometrics 68:1278–1284

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jackson D, White IR, Riley RD (2012) Quantifying the impact of between-study heterogeneity in multivariate meta-analyses. Stat Med 31:3805–3820

    Article  PubMed  PubMed Central  Google Scholar 

  26. Peters JL, Sutton AJ, Jones DR et al (2006) Comparison of two methods to detect publication bias in meta-analysis. JAMA 295:676–680

    Article  CAS  PubMed  Google Scholar 

  27. Zintzaras E, Ioannidis JP (2005) Heterogeneity testing in meta-analysis of genome searches. Genet Epidemiol 28:123–137

    Article  PubMed  Google Scholar 

  28. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  PubMed  Google Scholar 

  29. Huizenga HM, Visser I, Dolan CV (2011) Testing overall and moderator effects in random effects meta-regression. Br J Math Stat Psychol 64:1–19

    Article  PubMed  Google Scholar 

  30. Zintzaras E, Ioannidis JP (2005) HEGESMA: genome search meta-analysis and heterogeneity testing. Bioinformatics 21:3672–3673

    Article  CAS  PubMed  Google Scholar 

  31. Orwin RG (1983) A fail-safe N for effect size in meta-analysis. J Educ Stat 8:157–159

    Article  Google Scholar 

  32. Kozuka K, Kohriyama T, Nomura E et al (2002) Endothelial markers and adhesion molecules in acute ischemic stroke–sequential change and differences in stroke subtype. Atherosclerosis 161:161–168

    Article  CAS  PubMed  Google Scholar 

  33. Nomura E, Kohriyama T, Kozuka K et al (2004) Significance of serum soluble thrombomodulin level in acute cerebral infarction. Eur J Neurol 11:329–334

    Article  CAS  PubMed  Google Scholar 

  34. Zhang L, Sun DC, Zhang YX et al (2005) Study on the detection and application of the level of the thrombomodulin in myocardial infarction and cerebral infarction. Lab Med 20:40–41

    Google Scholar 

  35. Yu FC, Zhai YL, Liu Y et al (2006) Study on concentration of tissue factor and thrombomodulin in acute cerebral infarction patients. Beijing Med J 28:196–198

    CAS  Google Scholar 

  36. Zhang J, Wang DL, Zhang WY et al (2006) The study on the correlation between hs-CRP and the risk factors of cerebral infarction. Chin J Geriatr Heart Brain Vessel Dis 8:391–393

    CAS  Google Scholar 

  37. Yoldas T, Gonen M, Godekmerdan A et al (2007) The serum high-sensitive C reactive protein and homocysteine levels to evaluate the prognosis of acute ischemic stroke. Mediators Inflamm 2007:15929

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang X, Hu Y, Hong M et al (2007) Plasma thrombomodulin, fibrinogen, and activity of tissue factor as risk factors for acute cerebral infarction. Am J Clin Pathol 128:287–292

    Article  CAS  PubMed  Google Scholar 

  39. Zhong WY, Zhou WJ, Feng GP et al (2007) Clinical significance of plasma thrombomodulin expression in acute cerebral infarction. J Clin Res 24:641–642

    Google Scholar 

  40. Ding WX, Yan LR, Zhou XP et al (2009) Changes of the levels of serum soluble vascular adhesion protein-1 and C-reactive protein in patients with cerebral infarction. J Clin Neurol 22:451–452

    CAS  Google Scholar 

  41. Wu YZ, Chang LH, Ren H et al (2010) Changes of thrombomodulin and thrombomodulin Ala455Val polymorphism (C14181) in Chinese Han patients with acute cerebrovascular diseases. Int J Cerebrovasc Dis 18:21–25

    CAS  Google Scholar 

  42. Chei CL, Yamagishi K, Kitamura A et al (2011) C-reactive protein levels and risk of stroke and its subtype in Japanese: the Circulatory Risk in Communities Study (CIRCS). Atherosclerosis 217:187–193

    Article  CAS  PubMed  Google Scholar 

  43. Dharmasaroja P, Dharmasaroja PA, Sobhon P (2012) Increased plasma soluble thrombomodulin levels in cardioembolic stroke. Clin Appl Thromb Hemost 18:289–293

    Article  CAS  PubMed  Google Scholar 

  44. Shao H, Zou N, Li D et al (2012) Measurement and analysis on serum high sensitive C-reactive protein in cerebral infarction patients. Stroke Nerv Dis 19:299–301

    Google Scholar 

  45. Yin KJ, Deng Z, Hamblin M et al (2010) Peroxisome proliferator-activated receptor delta regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury. J Neurosci 30:6398–6408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brouns R, De Deyn PP (2009) The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg 111:483–495

    Article  CAS  PubMed  Google Scholar 

  47. Andreou AP, Crawley JT (2011) Thrombomodulin analogues for the treatment of ischemic stroke. J Thromb Haemost 9:1171–1173

    Article  CAS  PubMed  Google Scholar 

  48. Martin FA, McLoughlin A, Rochfort KD et al (2014) Regulation of thrombomodulin expression and release in human aortic endothelial cells by cyclic strain. PLoS One 9, e108254

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kahyaoglu S, Timur H, Eren R et al (2014) Can maternal serum C-reactive protein levels predict successful labour induction with intravenous oxytocin in term pregnancies complicated with premature rupture of the membranes? A cross-sectional study. J Turk Ger Gynecol Assoc 15:36–40

    Article  PubMed  PubMed Central  Google Scholar 

  50. Roudbary SA, Saadat F, Forghanparast K et al (2011) Serum C-reactive protein level as a biomarker for differentiation of ischemic from hemorrhagic stroke. Acta Med Iran 49:149–152

    PubMed  Google Scholar 

  51. Huang G, Wang A, Li X et al (2009) Change in high-sensitive C-reactive protein during abdominal aortic aneurysm formation. J Hypertens 27:1829–1837

    Article  CAS  PubMed  Google Scholar 

  52. Ueda K, Watanabe Y, Katsumata T et al (2011) Carotid intima-media thickness and cerebral white matter lesions are more advanced in acute ischemic stroke patients with renal dysfunction. Clin Nephrol 76:290–295

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to appreciate the reviewers for their helpful comments on this paper. This study was funded by National Natural Science Foundation of China (81100847, 81401127), Shanghai Natural Science Foundation (13ZR1460500), Shanghai Pujiang Program (14PJC002), and the excellent backbone project of Hongkou District in Shanghai.

Conflict of Interest

The authors have proclaimed no existing competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Li Liu or Ze-Zhi Li.

Additional information

Yan Han and Shuai Wu both are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Wu, S., Hu, Q. et al. Thrombomodulin and High-Sensitive C-Reactive Protein Levels in Blood Correlate with the Development of Cerebral Infarction Among Asians. Mol Neurobiol 53, 2659–2667 (2016). https://doi.org/10.1007/s12035-015-9279-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9279-y

Keywords

Navigation