Skip to main content
Log in

Agmatine, by Improving Neuroplasticity Markers and Inducing Nrf2, Prevents Corticosterone-Induced Depressive-Like Behavior in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Agmatine, an endogenous neuromodulator, is a potential candidate to constitute an adjuvant/monotherapy for the management of depression. A recent study by our group demonstrated that agmatine induces Nrf2 and protects against corticosterone effects in a hippocampal neuronal cell line. The present study is an extension of this previous study by assessing the antidepressant-like effect of agmatine in an animal model of depression induced by corticosterone in mice. Swiss mice were treated simultaneously with agmatine or imipramine at a dose of 0.1 mg/kg/day (p.o.) and corticosterone for 21 days and the daily administrations of experimental drugs were given immediately prior to corticosterone (20 mg/kg/day, p.o.) administrations. Wild-type C57BL/6 mice (Nrf2 (+/+)) and Nrf2 KO (Nrf2 (−/−)) were treated during 21 days with agmatine (0.1 mg/kg/day, p.o.) or vehicle. Twenty-four hours after the last treatments, the behavioral tests and biochemical assays were performed. Agmatine treatment for 21 days was able to abolish the corticosterone-induced depressive-like behavior and the alterations in the immunocontent of mature BDNF and synaptotagmin I, and in the serotonin and glutamate levels. Agmatine also abolished the corticosterone-induced changes in the morphology of astrocytes and microglia in CA1 region of hippocampus. In addition, agmatine treatment in control mice increased noradrenaline, serotonin, and dopamine levels, CREB phosphorylation, mature BDNF and synaptotagmin I immunocontents, and reduced pro-BDNF immunocontent in the hippocampus. Agmatine’s ability to produce an antidepressant-like effect was abolished in Nrf2 (−/−) mice. The present results reinforce the participation of Nrf2 in the antidepressant-like effect produced by agmatine and expand literature data concerning its mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

AFAR:

Aflotoxin B1 aldehyde reductase

ARE:

Antioxidant response element

BDNF:

Brain-derived-neurotrophic factor

CRE:

cAMP response elements

CREB:

Cyclic-AMP responsive-element binding protein

DA:

Dopamine

EAAT:

Excitatory amino-acid transporter

EH:

Epoxide hydrolase

ERK:

Extracellular signal-regulated kinase

FST:

Forced swimming test

GCLc:

Glutamate cysteine ligase, catalytic subunit

Gln:

Glutamine

Glu:

Glutamate

GSTs:

Glutathione S-transferases

HO-1:

Heme oxygenase-1

HPA:

Hypothalamic pituitary adrenal

5-HT:

5-Hydroxytryptamine

Keap1:

Kelch-like-ECH-associated protein 1

NE:

Norepinephrine

NMDA:

N-methyl-d-aspartate

NQO1:

NAD(P)H:quinone oxidoreductase 1

Nrf2:

(Erythroid 2-derived)-like 2

Syt I:

Synaptotagmin I

TCAs:

Tricyclic antidepressants

TrkB:

Tropomyosin-related kinase B

TST:

Tail suspension test

UDPGTs:

UDP-glucuronosyltransferases

References

  1. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62:593–602. doi:10.1001/archpsyc.62.6.593

    Article  PubMed  Google Scholar 

  2. Smith K (2014) Mental health: a world of depression. Nature 515:181. doi:10.1038/515180a

    PubMed  Google Scholar 

  3. Carroll CGC, Mendels J (1976) Neuroendocrine regulation in depression. I. Limbic system-adrenocortical dysfunction. Arch Gen Psychiatry 33:1039–1044. doi:10.1001/archpsyc.1976.01770090029002

    Article  CAS  PubMed  Google Scholar 

  4. Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new developments. Trends Neurosci 31:464–468. doi:10.1016/j.tins.2008.06.006

    Article  CAS  PubMed  Google Scholar 

  5. Frodl T, O’Keane V (2013) How does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans. Neurobiol Dis 52:24–37. doi:10.1016/j.nbd.2012.03.012

    Article  PubMed  Google Scholar 

  6. Maric NP, Adzic M (2013) Pharmacological modulation of HPA axis in depression—new avenues for potential therapeutic benefits. Psychiatr Danub 25:299–305

    CAS  PubMed  Google Scholar 

  7. Bruhn TO, Plotsky PM, Vale WW (1984) Effect of paraventricular lesions on corticotropin-releasing factor (CRF)-like immunoreactivity in the stalk-median eminence: studies on the adrenocorticotropin response to ether stress and exogenous CRF. Endocrinology 114:57–62. doi:10.1210/endo-114-1-57

    Article  CAS  PubMed  Google Scholar 

  8. Papadimitriou A, Priftis KN (2009) Regulation of the hypothalamic-pituitary-adrenal axis. Neuroimmunomodulation 16:265–271. doi:10.1159/000216184

    Article  CAS  PubMed  Google Scholar 

  9. Herman JP, Ostrander MM, Mueller NK, Figueiredo H (2005) Limbic system mechanisms of stress regulation: hypothalamo–pituitary–adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29:1201–1213. doi:10.1016/j.pnpbp.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  10. Myers B, McKlveen JM, Herman JP (2014) Glucocorticoid actions on synapses, circuits, and behavior: Implications for the energetics of stress. Front Neuroendocrinol 35:180–196. doi:10.1016/j.yfrne.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  11. Lee AL, Ogle WO, Sapolsky RM (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 4:117–128. doi:10.1034/j.1399-5618.2002.01144.x

    Article  CAS  PubMed  Google Scholar 

  12. Duman RS (2004) Neural plasticity: consequences of stress and actions of antidepressant treatment. Dialogues Clin Neurosci 6:157–169

    PubMed  PubMed Central  Google Scholar 

  13. McKinnon MC, Yucel K, Nazarov A, MacQueen GM (2009) A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci 34:41–54

    PubMed  PubMed Central  Google Scholar 

  14. Popoli M, Yan Z, McEwen BS, Sanacora G (2011) The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13:22–37. doi:10.1038/nrn3138

    Article  PubMed  PubMed Central  Google Scholar 

  15. Czéh B, Fuchs E, Flügge G (2013) Altered glial plasticity in animal models for mood disorders. Curr Drug Targets 14:1249–12461. doi:10.2174/1389450111314110005

    Article  PubMed  Google Scholar 

  16. Sanacora G, Banasr M (2013) From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry 73:1172–1179. doi:10.1016/j.biopsych.2013.03.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smiałowska M, Szewczyk B, Woźniak M, Wawrzak-Wleciał A, Domin H (2013) Glial degeneration as a model of depression. Pharmacol Rep 65:1572–1579

    Article  PubMed  Google Scholar 

  18. Verkhratsky A, Rodríguez JJ, Steardo L (2013) Astrogliopathology: a central element of neuropsychiatric diseases? Neuroscientist 20:576–588. doi:10.1177/1073858413510208

    Article  PubMed  Google Scholar 

  19. Kong H, Zeng XN, Fan Y, Yuan ST, Ge S, Xie WP, Wang H, Hu G (2014) Aquaporin-4 knockout exacerbates corticosterone-induced depression by inhibiting astrocyte function and hippocampal neurogenesis. CNS Neurosci Ther 20:391–402. doi:10.1111/cns.12222

    Article  CAS  PubMed  Google Scholar 

  20. Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, Kubera M, Bob P, Lerer B, Maj M (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24:27–53. doi:10.1007/s11011-008-9118-1

    Article  CAS  PubMed  Google Scholar 

  21. Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36:764–785. doi:10.1016/j.neubiorev.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  22. Satoh T, Okamoto SI, Cui J, Watanabe Y, Furuta K, Suzuki M, Tohyama K, Lipton SA (2006) Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic [correction of electrophillic] phase II inducers. Proc Natl Acad Sci U S A 103:768–773. doi:10.1073/pnas.0505723102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, Chen PC (2008) The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci 1147:61–69. doi:10.1196/annals.1427.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36:1199–1207. doi:10.1016/j.freeradbiomed.2004.02.074

    Article  CAS  PubMed  Google Scholar 

  25. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780. doi:10.1038/nrc1189

    Article  CAS  PubMed  Google Scholar 

  26. Turpaev KT (2013) Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles. Biochemistry (Mosc) 78:111–126. doi:10.1134/S0006297913020016

    Article  CAS  Google Scholar 

  27. Freitas AE, Egea J, Buendía I, Navarro E, Rada P, Cuadrado A, Rodrigues AL, López MG (2014a) Agmatine induces Nrf2 and protects against corticosterone effects in hippocampal neuronal cell line. Mol Neurobiol. In press. doi: 10.1007/s12035-014-8827-1

  28. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322. doi:10.1006/bbrc.1997.6943

    Article  CAS  PubMed  Google Scholar 

  29. Lussier AL, Romay-Tallón R, Kalynchuk LE, Caruncho HJ (2011) Reelin as a putative vulnerability factor for depression: examining the depressogenic effects of repeated corticosterone in heterozygous reeler mice. Neuropharmacology 60:1064–1074. doi:10.1016/j.neuropharm.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  30. Ago Y, Yano K, Araki R, Hiramatsu N, Kita Y, Kawasaki T, Onoe H, Chaki S, Nakazato A, Hashimoto H, Baba A, Takuma K, Matsuda T (2013) Metabotropic glutamate 2/3 receptor antagonists improve behavioral and prefrontal dopaminergic alterations in the chronic corticosterone-induced depression model in mice. Neuropharmacology 65:29–38. doi:10.1016/j.neuropharm.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  31. Freitas AE, Bettio LE, Neis VB, Moretti M, Ribeiro CM, Lopes MW, Leal RB, Rodrigues AL (2014) Sub-chronic agmatine treatment modulates hippocampal neuroplasticity and cell survival signaling pathways in mice. J Psychiatr Res 58:137–146. doi:10.1016/j.jpsychires.2014.07.024

    Article  PubMed  Google Scholar 

  32. Neis VB, Manosso LM, Moretti M, Freitas AE, Daufenbach J, Rodrigues AL (2014) Depressive-like behavior induced by tumor necrosis factor-α is abolished by agmatine administration. Behav Brain Res 261:336–344. doi:10.1016/j.bbr.2013.12.038

    Article  CAS  PubMed  Google Scholar 

  33. Rosa PB, Ribeiro CM, Bettio LE, Colla A, Lieberknecht V, Moretti M, Rodrigues AL (2014) Folic acid prevents depressive-like behavior induced by chronic corticosterone treatment in mice. Pharmacol Biochem Behav 127:1–6. doi:10.1016/j.pbb.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  34. Wong ML, Licinio J (2001) Research and treatment approaches to depression. Nat Rev Neurosci 2:343–351. doi:10.1038/35072566

    Article  CAS  PubMed  Google Scholar 

  35. Hammen C, Kim EY, Eberhart NK, Brennan PA (2009) Chronic and acute stress and the prediction of major depression in women. Depress Anxiety 26:718–723. doi:10.1002/da.20571

    Article  PubMed  PubMed Central  Google Scholar 

  36. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  CAS  PubMed  Google Scholar 

  37. Freitas AE, Budni J, Lobato KR, Binfaré RW, Machado DG, Jacinto J, Veronezi PO, Pizzolatti MG, Rodrigues AL (2010) Antidepressant-like action of the ethanolic extract from Tabebuia avellanedae in mice: evidence for the involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry 34:335–343. doi:10.1016/j.pnpbp.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  38. Freitas AE, Machado DG, Budni J, Neis VB, Balen GO, Lopes MW, de Souza LF, Dafre AL, Leal RB, Rodrigues AL (2013) Fluoxetine modulates hippocampal cell signaling pathways implicated in neuroplasticity in olfactory bulbectomized mice. Behav Brain Res 237:176–184. doi:10.1016/j.bbr.2012.09.035

    Article  CAS  PubMed  Google Scholar 

  39. Freitas AE, Machado DG, Budni J, Neis VB, Balen GO, Lopes MW, de Souza LF, Veronezi PO, Heller M, Micke GA, Pizzolatti MG, Dafre AL, Leal RB, Rodrigues AL (2013) Antidepressant-like action of the bark ethanolic extract from Tabebuia avellanedae in the olfactory bulbectomized mice. J Ethnopharmacol 145:737–745. doi:10.1016/j.jep.2012.11.040

    Article  CAS  PubMed  Google Scholar 

  40. Freitas AE, Moretti M, Budni J, Balen GO, Fernandes SC, Veronezi PO, Heller M, Micke GA, Pizzolatti MG, Rodrigues AL (2013) NMDA receptors and the l-arginine-nitric oxide-cyclic guanosine monophosphate pathway are implicated in the antidepressant-like action of the ethanolic extract from Tabebuia avellanedae in mice. J Med Food 16:1030–1038. doi:10.1089/jmf.2012.0276

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rodrigues AL, Rocha JB, Mello CF, Souza DO (1996) Effect of perinatal lead exposure on rat behaviour in open-field and two-way avoidance tasks. Pharmacol Toxicol 79:150–156

    Article  CAS  PubMed  Google Scholar 

  42. Isingrini E, Camus V, Le Guisquet AM, Pingaud M, Devers S, Belzung C (2010) Association between repeated unpredictable chronic mild stress (UCMS) procedures with a high fat diet: a model of fluoxetine resistance in mice. PLoS One 5, e10404. doi:10.1371/journal.pone.0010404

    Article  PubMed  PubMed Central  Google Scholar 

  43. González RR, Fernández RF, Vidal JL, Frenich AG, Pérez ML (2011) Development and validation of an ultra-high performance liquid chromatography-tandem mass-spectrometry (UHPLC-MS/MS) method for the simultaneous determination of neurotransmitters in rat brain samples. J Neurosci Methods 198:187–194. doi:10.1016/j.jneumeth.2011.03.023

    Article  PubMed  Google Scholar 

  44. Su F, Wang F, Zhu R, Li H (2009) Determination of 5-hydroxytryptamine, norepinephrine, dopamine and their metabolites in rat brain tissue by LC-ESI-MS-MS. Chromatographia 69:207–213

    Article  CAS  Google Scholar 

  45. Zhu KY, Fu Q, Leung KW, Wong ZC, Choi RC, Tsim KW (2011) The establishment of a sensitive method in determining different neurotransmitters simultaneously in rat brains by using liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 879:737–742. doi:10.1016/j.jchromb.2011.02.011

    Article  CAS  Google Scholar 

  46. Reis DJ, Regunathan S (1999) Agmatine: an endogenous ligand at imidazoline receptors is a novel neurotransmitter. Ann N Y Acad Sci 881:65–80. doi:10.1111/j.1749-6632.1999.tb09343.x

    Article  CAS  PubMed  Google Scholar 

  47. Goracke-Postle CJ, Overland AC, Riedl MS, Stone LS, Fairbanks CA (2007) Potassium- and capsaicin-induced release of agmatine from spinal nerve terminals. J Neurochem 102:1738–1748. doi:10.1111/j.1471-4159.2007.04647.x

    Article  CAS  PubMed  Google Scholar 

  48. Tabor CW, Tabor H (1984) Polyamines. Ann Rev Biochem 53:749–790

    Article  CAS  PubMed  Google Scholar 

  49. Seo S, Liu P, Leitch B (2011) Spatial learning-induced accumulation of agmatine and glutamate at hippocampal CA1 synaptic terminals. Neuroscience 192:28–36. doi:10.1016/j.neuroscience.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  50. Reis DJ, Regunathan S (1998) Agmatine: an endogenous ligand at imidazoline receptors may be a novel neurotransmitter in brain. J Auton Nerv Syst 72:80–85

    Article  CAS  PubMed  Google Scholar 

  51. Reis DJ, Regunathan S (2000) Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci 21:187–193. doi:10.1016/S0165-6147(00)01460-7

    Article  CAS  PubMed  Google Scholar 

  52. Piletz JE, Aricioglu F, Cheng JT, Fairbanks CA, Gilad VH, Haenisch B, Halaris A, Hong S, Lee JE, Li J, Liu P, Molderings GJ, Rodrigues AL, Satriano J, Seong GJ, Wilcox G, Wu N, Gilad GM (2013) Agmatine: clinical applications after 100 years in translation. Drug Discov Today 17–18:880–893. doi:10.1016/j.drudis.2013.05.017

    Article  Google Scholar 

  53. Zhu MY, Wang WP, Cai ZW, Regunathan S, Ordway G (2008) Exogenous agmatine has neuroprotective effects against restraint-induced structural changes in the rat brain. Eur J Neurosci 27:1320–1332. doi:10.1111/j.1460-9568.2008.06104.x

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zomkowski AD, Hammes L, Lin J, Calixto JB, Santos AR, Rodrigues AL (2002) Agmatine produces antidepressant-like effects in two models of depression in mice. Neuroreport 13:387–391

    Article  CAS  PubMed  Google Scholar 

  55. Zomkowski ADE, Rosa AO, Lin J, Santos AR, Calixto JB, Rodrigues ALS (2004) Evidence for serotonin receptor subtypes involvement in agmatine antidepressant like-effect in the mouse forced swimming test. Brain Res 1023:253–263

    Article  CAS  Google Scholar 

  56. Zomkowski AD, Santos AR, Rodrigues AL (2005) Evidence for the involvement of the opioid system in the agmatine antidepressant-like effect in the forced swimming test. Neurosci Lett 381:279–283. doi:10.1016/j.brainres.2004.07.041

    Article  CAS  PubMed  Google Scholar 

  57. Freitas AE, Bettio LE, Neis VB, Santos DB, Ribeiro CM, Rosa PB, Farina M, Rodrigues AL (2014) Agmatine abolishes restraint stress-induced depressive-like behavior and hippocampal antioxidant imbalance in mice. Prog Neuropsychopharmacol Biol Psychiatry 50:143–150. doi:10.1016/j.pnpbp.2013.12.012

    Article  CAS  PubMed  Google Scholar 

  58. Shopsin B (2013) The clinical antidepressant effect of exogenous agmatine is not reversed by parachlorophenylalanine: a pilot study. Acta Neuropsychol 25:113–118. doi:10.1111/j.1601-5215.2012.00675.x

    Article  Google Scholar 

  59. Jiang XZ, Li YF, Zhang YZ, Chen HX, Li J, Wang NP (2008) 5-HT1A/1B receptors, alpha2-adrenoceptors and the post-receptor adenylate cyclase activation in the mice brain are involved in the antidepressant-like action of agmatine. Yao Xue Xue Bao 43:467–473

    CAS  PubMed  Google Scholar 

  60. Taksande BG, Kotagale NR, Tripathi SJ, Ugale RR, Chopde CT (2009) Antidepressant like effect of selective serotonin reuptake inhibitors involve modulation of imidazoline receptors by agmatine. Neuropharmacology 57:415–424. doi:10.1016/j.neuropharm.2009.06.035

    Article  CAS  PubMed  Google Scholar 

  61. Lipsky RH, Marini AM (2007) Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann N Y Acad Sci 1122:130–143. doi:10.1196/annals.1403.009

    Article  CAS  PubMed  Google Scholar 

  62. Greenberg ME, Xu B, Lu B, Hempstead BL (2009) New insights in the biology of BDNF synthesis and release: implications in CNS function. J Neurosci 29:12764–12767. doi:10.1523/JNEUROSCI.3566-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cunha C, Brambilla R, Thomas KL (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3:1. doi:10.3389/neuro.02.001.2010

    PubMed  PubMed Central  Google Scholar 

  64. Maes M, Fišar Z, Medina M, Scapagnini G, Nowak G, Berk M (2012) New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates–Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 20:127–150. doi:10.1007/s10787-011-0111-7

    Article  CAS  PubMed  Google Scholar 

  65. Martín-de-Saavedra MD, Budni J, Cunha MP, Gómez-Rangel V, Lorrio S, Del Barrio L, Lastres-Becker I, Parada E, Tordera RM, Rodrigues AL, Cuadrado A, López MG (2013) Nrf2 participates in depressive disorders through an anti-inflammatory mechanism. Psychoneuroendocrinology 38:2010–2022. doi:10.1016/j.psyneuen.2013.03.020

    Article  PubMed  Google Scholar 

  66. Lee SY, Lee SJ, Han C, Patkar AA, Masand PS, Pae CU (2013) Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 46:224–235. doi:10.1016/j.pnpbp.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  67. Lukic I, Mitic M, Djordjevic J, Tatalovic N, Bozovic N, Soldatovic I, Mihaljevic M, Pavlovic Z, Radojcic MB, Maric NP, Adzic M (2014) Lymphocyte levels of redox-sensitive transcription factors and antioxidative enzymes as indicators of pro-oxidative state in depressive patients. Neuropsychobiology 70:1–9. doi:10.1159/000362841

    Article  CAS  PubMed  Google Scholar 

  68. Zheng A, Li H, Cao K, Xu J, Zou X, Li Y, Chen C, Liu J, Feng Z (2015) Maternal hydroxytyrosol administration improves neurogenesis and cognitive function in prenatally stressed offspring. J Nutr Biochem 26:190–199. doi:10.1016/j.jnutbio.2014.10.006

    Article  CAS  PubMed  Google Scholar 

  69. Djordjevic J, Djordjevic A, Adzic M, Mitic M, Lukic I, Radojcic MB (2015) Alterations in the Nrf2-Keap1 signaling pathway and its downstream target genes in rat brain under stress. Brain Res 1602:20–31. doi:10.1016/j.brainres.2015.01.010

    Article  CAS  PubMed  Google Scholar 

  70. Gilad GM, Salame K, Rabey JM, Gilad VH (1996) Agmatine treatment is neuroprotective in rodent brain injury models. Life Sci 58:PL 41–PL 46

    CAS  Google Scholar 

  71. Scapagnini G, Davinelli S, Drago F, De Lorenzo A, Oriani G (2012) Antioxidants as antidepressants: fact or fiction? CNS Drugs 26:477–490. doi:10.2165/11633190-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  72. Tata DA, Anderson BJ (2010) The effects of chronic glucocorticoid exposure on dendritic length, synapse numbers and glial volume in animal models: implications for hippocampal volume reductions in depression. Physiol Behav 99:186–193. doi:10.1016/j.physbeh.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  73. Allen NJ (2014) Astrocyte regulation of synaptic behavior. Annu Rev Cell Dev Biol 30:439–463. doi:10.1146/annurev-cellbio-100913-013053

    Article  CAS  PubMed  Google Scholar 

  74. Bernardinelli Y, Muller D, Nikonenko I (2014) Astrocyte-synapse structural plasticity. Neural Plast 2014:232105. doi:10.1155/2014/232105

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14:1225–1236. doi:10.2174/13894501113149990156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Roman A, Kreiner G, Nalepa I (2013) Macrophages and depression—a misalliance or well-arranged marriage? Pharmacol Rep 65:1663–1672

    Article  CAS  PubMed  Google Scholar 

  77. Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, Maier SF, Yirmiya R (2014) Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 19:699–709. doi:10.1038/mp.2013.155

    Article  CAS  PubMed  Google Scholar 

  78. Gadotti VM, Tibola D, Paszcuk AF, Rodrigues AL, Calixto JB, Santos AR (2006) Contribution of spinal glutamatergic receptors to the antinociception caused by agmatine in mice. Brain Res 1093:116–122. doi:10.1016/j.brainres.2006.03.087

    Article  CAS  PubMed  Google Scholar 

  79. Olmos G, DeGregorio-Rocasolano N, Paz Regalado M, Gasull T, Assumpció Boronat M, Trullas R, Villarroel A, Lerma J, García-Sevilla JÁ (1999) Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. Br J Pharmacol 127:1317–1326. doi:10.1038/sj.bjp.0702679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang WP, Iyo AH, Miguel-Hidalgo J, Regunathan S, Zhu MY (2006) Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons. Brain Res 1084:210–216. doi:10.1016/j.brainres.2006.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhu MY, Wang WP, Bissette G (2006) Neuroprotective effects of agmatine against cell damage caused by glucocorticoids in cultured rat hippocampal neurons. Neuroscience 141:2019–2027. doi:10.1016/j.neuroscience.2006.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by CNPq, CAPES/PDSE, CAPES/PROCAD, Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC) Project/ PRONEX Program CNPq/FAPESC (Brazil) to ALSR. The 8th Convocatoria de proyectos de Cooperación Interuniversitaria UAM-Santander con America Latina, Spanish Ministry of Economy and Competence Ref. SAF2012-32223 to MGL and ALSR. This work was also supported by FIS CA12/00122 to ARN and FPU12/02220 to AW.

Conflict of Interest

All authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andiara E. Freitas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, A.E., Egea, J., Buendia, I. et al. Agmatine, by Improving Neuroplasticity Markers and Inducing Nrf2, Prevents Corticosterone-Induced Depressive-Like Behavior in Mice. Mol Neurobiol 53, 3030–3045 (2016). https://doi.org/10.1007/s12035-015-9182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9182-6

Keywords

Navigation