Skip to main content

Advertisement

Log in

Prevention of Photocarcinogenesis by Agonists of 5-HT1A and Antagonists of 5-HT2A Receptors

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Exposure to UV radiation is the principal cause of nonmelanoma skin cancer, a process in which serotonin (5-HT) is intimately involved. This review focuses on the potential of serotonin receptors, namely 5-HT1/2A, as therapeutic targets for prevention of photocarcinogenesis. UV-induced immunosuppression is triggered by a cascade of events initiated when cis-urocanic acid, a UV photoreceptor present in the skin, binds to the serotonin receptor. Serotonin receptor antagonists will therefore attempt to block this association, and in turn, prevent skin cancer induction. In addition, 5-HT2A receptor antagonists are also capable of regulating DNA repair, including the acceleration of nucleotide excision repair. At the same time, UV-induced formation of reactive oxygen species is also reduced by these agents. Since the involvement of serotonin in photocarcinogenesis process is somewhat underexplored as a pertinent therapeutic effect, this review intends to reveal the use of serotonergic drugs as an important strategy to prevent and/or inhibit photocarcinogenesis. Considering the emergency of developing novel therapeutic strategies for skin cancer management, the use of these agents, whose benefits have partially been studied, may be crucial especially if topically applied. Topical nanoformulations containing serotonin receptor agonists and/or antagonists also represent a pioneer concept in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Sweta Subhadarshani, Mohammad Athar & Craig A. Elmets

Abbreviations

FapydG:

2,6-Diamino-4-hydroxy-5-formamidopyrimidine

SERT or 5-HTT:

5-Hydroxytryptamine transporter

5-HIAL:

5-Hydroxy-3-indolacetaldehyde

5-HIAA:

5-Hydroxy-3-indolacetic acid

5-HT:

5-Hydroxytryptamine or serotonin

5-HTR:

5-Hydroxytryptamine receptors

5-HTPOL:

5-Hydroxytryptophol

5-MT:

5-Methoxytryptamine

5-HTP:

5-OH-tryptophan

8-OH-dG:

8-Hydroxy-2-deoxyguanosine

8-oxo-dG:

8-Oxo-7,8-dihydroguanine

OGG1:

8-Oxoguanine DNA glycosylase-1

ADH:

Alcohol dehydrogenase

ALDH2:

Aldehyde dehydrogenase

ALDR:

Aldehyde reductase

Ag:

Antigens

AIF:

Apoptosis inducing factor

BCCs:

Basal cell carcinomas

BER:

Base excision repair

BH4:

Cofactor 6-tetrahydrobiopterin

CHS:

Contact hypersensitivity

CPD:

Cyclobutane-type pyrimidine dimers

COX:

Cyclooxygenase

DAG:

Diacylglycerol

DAT:

Dopamine transporter

APC:

Epidermal antigen-presenting cells

FAD:

Flavin adenine dinucleotide

Th:

Helper T cells

HSV:

Herpes simplex virus

HPA:

Hypothalamic-pituitary-adrenal axis

IP3:

Inositol 1,4,5-triphosphate

IFN-γ:

Interferon gamma

IL:

Interleukins

l-aromatic AAD:

l-amino acid decarboxylase

LC:

Langerhans cells

MHC:

Major histocompatibility complex

MAO:

Monoamine oxidase

NAS:

N-acetylserotonin

NK:

Natural killer cells

NO:

Nitric oxide

NMSC:

Nonmelanoma skin cancers

NER:

Nucleotide excision repair

OS:

Oxidative stress

PI:

Phosphoinositol

PLC:

Phospholipase C

PDT:

Photodynamic therapy

PAF:

Platelet-activating factor

PCR:

Polymerase chain reaction

OCT:

Polyspecific organic cation transporters

PG:

Prostaglandin

PKA:

Protein kinase A

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

Treg:

Regulatory T cells

SSRIs:

Selective serotonin reuptake inhibitors or serotonin-specific reuptake inhibitor

SCCs:

Squamous cell carcinomas

TGF-β:

Transforming growth factor

TPH:

Tryptophan hydroxylase

TNF-α:

Tumor necrosis factor-α

UVR:

Ultraviolet radiation

UCA:

Urocanic acid

VMAT:

Vesicular monoamine transporter

References

  1. Slominski A, Wortsman J (2000) Neuroendocrinology of the skin. Endocr Rev 21(5):457–487. doi:10.1210/edrv.21.5.0410

    CAS  PubMed  Google Scholar 

  2. Slominski AT, Zmijewski MA, Skobowiat C, Zbytek B, Slominski RM, Steketee JD (2012) Sensing the environment: regulation of local and global homeostasis by the skin's neuroendocrine system. Adv Anat Embryol Cell Biol 212(v, vii):1–115

    Article  Google Scholar 

  3. Slominski A, Wortsman J, Tobin DJ (2005) The cutaneous serotoninergic/melatoninergic system: securing a place under the sun. FASEB J Off Publ Fed Am Soc Exp Biol 19(2):176–194. doi:10.1096/fj.04-2079rev

    CAS  Google Scholar 

  4. Zmijewski MA, Slominski AT (2011) Neuroendocrinology of the skin: an overview and selective analysis. Dermatol Endocrinol 3(1):3–10. doi:10.4161/derm.3.1.14617

    Article  CAS  Google Scholar 

  5. Bissett DL (2009) Common cosmeceuticals. Clin Dermatol 27(5):435–445. doi:10.1016/j.clindermatol.2009.05.006

    Article  PubMed  Google Scholar 

  6. Nordlind K, Azmitia EC, Slominski A (2008) The skin as a mirror of the soul: exploring the possible roles of serotonin. Exp Dermatol 17(4):301–311. doi:10.1111/j.1600-0625.2007.00670.x

    Article  CAS  PubMed  Google Scholar 

  7. Baganz NL, Blakely RD (2013) A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci 4(1):48–63. doi:10.1021/cn300186b

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Fidalgo S, Ivanov DK, Wood SH (2013) Serotonin: from top to bottom. Biogerontology 14(1):21–45. doi:10.1007/s10522-012-9406-3

    Article  CAS  PubMed  Google Scholar 

  9. Froberg GK, Lindberg R, Ritter M, Nordlind K (2009) Expression of serotonin and its 5-HT1A receptor in canine cutaneous mast cell tumours. J Comp Pathol 141(2–3):89–97. doi:10.1016/j.jcpa.2008.08.002

    Article  PubMed  CAS  Google Scholar 

  10. Abdala-Valencia H, Berdnikovs S, McCary CA, Urick D, Mahadevia R, Marchese ME, Swartz K, Wright L, Mutlu GM, Cook-Mills JM (2012) Inhibition of allergic inflammation by supplementation with 5-hydroxytryptophan. Am J Physiol Lung Cell Mol Physiol 303(8):L642–L660. doi:10.1152/ajplung.00406.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Hauso O, Gustafsson BI, Loennechen JP, Stunes AK, Nordrum I, Waldum HL (2007) Long-term serotonin effects in the rat are prevented by terguride. Regul Pept 143(1–3):39–46. doi:10.1016/j.regpep.2007.02.009

    Article  CAS  PubMed  Google Scholar 

  12. Sreevidya CS, Fukunaga A, Khaskhely NM, Masaki T, Ono R, Nishigori C, Ullrich SE (2010) Agents that reverse UV-Induced immune suppression and photocarcinogenesis affect DNA repair. J Investig Dermatol 130(5):1428–1437. doi:10.1038/jid.2009.329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ullrich SE (2007) Sunlight and skin cancer: lessons from the immune system. Mol Carcinog 46(8):629–633. doi:10.1002/mc.20328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Sreevidya CS, Khaskhely NM, Fukunaga A, Khaskina P, Ullrich SE (2008) Inhibition of photocarcinogenesis by platelet-activating factor or serotonin receptor antagonists. Cancer Res 68(10):3978–3984. doi:10.1158/0008-5472.CAN-07-6132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. http://www.who.int/en/. 2014

  16. Ferrandiz L, Ruiz-de-Casas A, Trakatelli M, de Vries E, Ulrich M, Aquilina S, Saksela O, Majewski S, Ranki A, Proby C, Magnoni C, Pitkanen S, Kalokasidis K, Siskou S, Hinrichs B, Altsitsiadis E, Stockfleth E, Moreno-Ramirez D, Group E (2012) Assessing physicians' preferences on skin cancer treatment in Europe. Br J Dermatol 167(Suppl 2):29–35. doi:10.1111/j.1365-2133.2012.11084.x

    Article  PubMed  Google Scholar 

  17. http://www.skincancer.org. 2014

  18. Saager RB, Cuccia DJ, Saggese S, Kelly KM, Durkin AJ (2013) A light emitting diode (LED) based spatial frequency domain imaging system for optimization of photodynamic therapy of nonmelanoma skin cancer: quantitative reflectance imaging. Lasers Surg Med 45(4):207–215. doi:10.1002/lsm.22139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. http://www.uv-damage.org/. 2014

  20. Gruber F, Zamolo G, Kastelan M, Massari LP, Cabrijan L, Peharda V, Batinac T (2007) Photocarcinogenesis—molecular mechanisms. Coll Antropol 31(Suppl 1):101–106

    PubMed  Google Scholar 

  21. Black HS, deGruijl FR, Forbes PD, Cleaver JE, Ananthaswamy HN, deFabo EC, Ullrich SE, Tyrrell RM (1997) Photocarcinogenesis: an overview. J Photochem Photobiol B Biol 40(1):29–47

    Article  CAS  Google Scholar 

  22. Afaq F, Katiyar SK (2011) Polyphenols: skin photoprotection and inhibition of photocarcinogenesis. Mini Rev Med Chem 11(14):1200–1215

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Kadekaro AL, Kavanagh RJ, Wakamatsu K, Ito S, Pipitone MA, Abdel-Malek ZA (2003) Cutaneous photobiology. The melanocyte vs. the sun: who will win the final round? Pigment Cell Res Sponsored Eur Soc Pigment Cell Res Int Pigment Cell Soc 16(5):434–447

    Article  CAS  Google Scholar 

  24. Vaid M, Katiyar SK (2010) Molecular mechanisms of inhibition of photocarcinogenesis by silymarin, a phytochemical from milk thistle (Silybum marianum L. Gaertn.) (Review). Int J Oncol 36(5):1053–1060

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Mittal A, Elmets CA, Katiyar SK (2003) Dietary feeding of proanthocyanidins from grape seeds prevents photocarcinogenesis in SKH-1 hairless mice: relationship to decreased fat and lipid peroxidation. Carcinogenesis 24(8):1379–1388. doi:10.1093/carcin/bgg095

    Article  CAS  PubMed  Google Scholar 

  26. Goodsell DS (2001) The molecular perspective: ultraviolet light and pyrimidine dimers. Oncologist 6(3):298–299

    Article  CAS  PubMed  Google Scholar 

  27. Yamamoto J, Martin R, Iwai S, Plaza P, Brettel K (2013) Repair of the (6-4) photoproduct by DNA photolyase requires two photons. Angew Chem 52(29):7432–7436. doi:10.1002/anie.201301567

    Article  CAS  Google Scholar 

  28. Kamiya H, Iwai S, Kasai H (1998) The (6-4) photoproduct of thymine-thymine induces targeted substitution mutations in mammalian cells. Nucleic Acids Res 26(11):2611–2617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Rochette PJ, Therrien JP, Drouin R, Perdiz D, Bastien N, Drobetsky EA, Sage E (2003) UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells. Nucleic Acids Res 31(11):2786–2794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kim TH, Moodycliffe AM, Yarosh DB, Norval M, Kripke ML, Ullrich SE (2003) Viability of the antigen determines whether DNA or urocanic acid act as initiator molecules for UV-induced suppression of delayed-type hypersensitivity. Photochem Photobiol 78(3):228–234

    Article  CAS  PubMed  Google Scholar 

  31. Beissert S, Ruhlemann D, Mohammad T, Grabbe S, El-Ghorr A, Norval M, Morrison H, Granstein RD, Schwarz T (2001) IL-12 prevents the inhibitory effects of cis-urocanic acid on tumor antigen presentation by Langerhans cells: implications for photocarcinogenesis. J Immunol 167(11):6232–6238

    Article  CAS  PubMed  Google Scholar 

  32. Mittal A, Piyathilake C, Hara Y, Katiyar SK (2003) Exceptionally high protection of photocarcinogenesis by topical application of (−)-epigallocatechin-3-gallate in hydrophilic cream in SKH-1 hairless mouse model: relationship to inhibition of UVB-induced global DNA hypomethylation. Neoplasia 5(6):555–565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Maverakis E, Miyamura Y, Bowen MP, Correa G, Ono Y, Goodarzi H (2010) Light, including ultraviolet. J Autoimmun 34(3):J247–J257. doi:10.1016/j.jaut.2009.11.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Li J, Uchida T, Todo T, Kitagawa T (2006) Similarities and differences between cyclobutane pyrimidine dimer photolyase and (6-4) photolyase as revealed by resonance Raman spectroscopy: electron transfer from the FAD cofactor to ultraviolet-damaged DNA. J Biol Chem 281(35):25551–25559

    Article  CAS  PubMed  Google Scholar 

  35. Chial H (2008) Proto-oncogenes to oncogenes to cancer. Nat Educ 1(1):33

    Google Scholar 

  36. Goukassian D, Gad F, Yaar M, Eller MS, Nehal US, Gilchrest BA (2000) Mechanisms and implications of the age-associated decrease in DNA repair capacity. FASEB J Off Publ Fed Am Soc Exp Biol 14(10):1325–1334

    CAS  Google Scholar 

  37. Narayanapillai S, Agarwal C, Tilley C, Agarwal R (2012) Silibinin is a potent sensitizer of UVA radiation-induced oxidative stress and apoptosis in human keratinocyte HaCaT cells. Photochem Photobiol 88(5):1135–1140. doi:10.1111/j.1751-1097.2011.01050.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kawachi Y, Xu X, Taguchi S, Sakurai H, Nakamura Y, Ishii Y, Fujisawa Y, Furuta J, Takahashi T, Itoh K, Yamamoto M, Yamazaki F, Otsuka F (2008) Attenuation of UVB-induced sunburn reaction and oxidative DNA damage with no alterations in UVB-induced skin carcinogenesis in Nrf2 gene-deficient mice. J Investig Dermatol 128(7):1773–1779. doi:10.1038/sj.jid.5701245

    Article  CAS  PubMed  Google Scholar 

  39. Kryston TB, Georgiev AB, Pissis P, Georgakilas AG (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711(1–2):193–201. doi:10.1016/j.mrfmmm.2010.12.016

    Article  CAS  PubMed  Google Scholar 

  40. Wondrak GT, Cabello CM, Villeneuve NF, Zhang S, Ley S, Li Y, Sun Z, Zhang DD (2008) Cinnamoyl-based Nrf2-activators targeting human skin cell photo-oxidative stress. Free Radic Biol Med 45(4):385–395. doi:10.1016/j.freeradbiomed.2008.04.023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Halliday GM (2005) Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat Res 571(1–2):107–120. doi:10.1016/j.mrfmmm.2004.09.013

    Article  CAS  PubMed  Google Scholar 

  42. Song EJ, Gordon-Thomson C, Cole L, Stern H, Halliday GM, Damian DL, Reeve VE, Mason RS (2013) 1alpha,25-Dihydroxyvitamin D3 reduces several types of UV-induced DNA damage and contributes to photoprotection. J Steroid Biochem Mol Biol 136:131–138. doi:10.1016/j.jsbmb.2012.11.003

    Article  CAS  PubMed  Google Scholar 

  43. Kitsera N, Stathis D, Luhnsdorf B, Muller H, Carell T, Epe B, Khobta A (2011) 8-Oxo-7,8-dihydroguanine in DNA does not constitute a barrier to transcription, but is converted into transcription-blocking damage by OGG1. Nucleic Acids Res 39(14):5926–5934. doi:10.1093/nar/gkr163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kunisada M, Sakumi K, Tominaga Y, Budiyanto A, Ueda M, Ichihashi M, Nakabeppu Y, Nishigori C (2005) 8-Oxoguanine formation induced by chronic UVB exposure makes Ogg1 knockout mice susceptible to skin carcinogenesis. Cancer Res 65(14):6006–6010. doi:10.1158/0008-5472.CAN-05-0724

    Article  CAS  PubMed  Google Scholar 

  45. Huang XX, Scolyer RA, Abubakar A, Halliday GM (2012) Human 8-oxoguanine-DNA glycosylase-1 is downregulated in human basal cell carcinoma. Mol Genet Metab 106(1):127–130. doi:10.1016/j.ymgme.2012.02.017

    Article  CAS  PubMed  Google Scholar 

  46. Wolfle U, Haarhaus B, Schempp CM (2013) The photoprotective and antioxidative properties of luteolin are synergistically augmented by tocopherol and ubiquinone. Planta Med 79(11):963–965. doi:10.1055/s-0032-1328716

    Article  PubMed  Google Scholar 

  47. Kripke ML (1974) Antigenicity of murine skin tumors induced by ultraviolet light. J Natl Cancer Inst 53(5):1333–1336

    CAS  PubMed  Google Scholar 

  48. Katiyar SK (2007) Interleukin-12 and photocarcinogenesis. Toxicol Appl Pharmacol 224(3):220–227. doi:10.1016/j.taap.2006.11.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Nasti TH, Iqbal O, Tamimi IA, Geise JT, Katiyar SK, Yusuf N (2011) Differential roles of T-cell subsets in regulation of ultraviolet radiation induced cutaneous photocarcinogenesis. Photochem Photobiol 87(2):387–398. doi:10.1111/j.1751-1097.2010.00859.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Schwarz T, Schwarz A (2011) Molecular mechanisms of ultraviolet radiation-induced immunosuppression. Eur J Cell Biol 90(6–7):560–564. doi:10.1016/j.ejcb.2010.09.011

    Article  CAS  PubMed  Google Scholar 

  51. Romani N, Brunner PM, Stingl G (2012) Changing views of the role of Langerhans cells. J Investig Dermatol 132(3 Pt 2):872–881. doi:10.1038/jid.2011.437

    Article  CAS  PubMed  Google Scholar 

  52. Beissert S, Loser K (2008) Molecular and cellular mechanisms of photocarcinogenesis. Photochem Photobiol 84(1):29–34. doi:10.1111/j.1751-1097.2007.00231.x

    CAS  PubMed  Google Scholar 

  53. Justo GZ, Shishido SM, Machado D, Silva RA, Ferreira CV (2011) Nanocosmetics and nanomedicines, new approaches for skin care. In: Beck R, Guterres S, Pohlmann A (eds). doi:10.1007/978-3-642-19792-5

  54. Kautz-Neu K, Noordegraaf M, Dinges S, Bennett CL, John D, Clausen BE, von Stebut E (2011) Langerhans cells are negative regulators of the anti-Leishmania response. J Exp Med 208(5):885–891. doi:10.1084/jem.20102318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Obhrai JS, Oberbarnscheidt M, Zhang N, Mueller DL, Shlomchik WD, Lakkis FG, Shlomchik MJ, Kaplan DH (2008) Langerhans cells are not required for efficient skin graft rejection. J Investig Dermatol 128(8):1950–1955. doi:10.1038/jid.2008.52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Schwarz A, Noordegraaf M, Maeda A, Torii K, Clausen BE, Schwarz T (2010) Langerhans cells are required for UVR-induced immunosuppression. J Investig Dermatol 130(5):1419–1427. doi:10.1038/jid.2009.429

    Article  CAS  PubMed  Google Scholar 

  57. Dinkova-Kostova A (2008) Phytochemicals as protectors against ultraviolet radiation: versatility of effects and mechanisms. Planta Med 74(13):1548–1559

    Article  CAS  PubMed  Google Scholar 

  58. Loser K, Apelt J, Voskort M, Mohaupt M, Balkow S, Schwarz T, Grabbe S, Beissert S (2007) IL-10 controls ultraviolet-induced carcinogenesis in mice. J Immunol 179(1):365–371

    Article  CAS  PubMed  Google Scholar 

  59. Katiyar SK (2007) UV-induced immune suppression and photocarcinogenesis: chemoprevention by dietary botanical agents. Cancer Lett 255(1):1–11. doi:10.1016/j.canlet.2007.02.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Katiyar S, Elmets CA, Katiyar SK (2007) Green tea and skin cancer: photoimmunology, angiogenesis and DNA repair. J Nutr Biochem 18(5):287–296. doi:10.1016/j.jnutbio.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  61. Schwarz A, Stander S, Berneburg M, Bohm M, Kulms D, van Steeg H, Grosse-Heitmeyer K, Krutmann J, Schwarz T (2002) Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. Nat Cell Biol 4(1):26–31

    Article  CAS  PubMed  Google Scholar 

  62. Walterscheid JP, Nghiem DX, Kazimi N, Nutt LK, McConkey DJ, Norval M, Ullrich SE (2006) Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor. Proc Natl Acad Sci U S A 103(46):17420–17425. doi:10.1073/pnas.0603119103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Schwarz A, Maeda A, Kernebeck K, van Steeg H, Beissert S, Schwarz T (2005) Prevention of UV radiation-induced immunosuppression by IL-12 is dependent on DNA repair. J Exp Med 201(2):173–179. doi:10.1084/jem.20041212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Norval M, Gibbs NK, Gilmour J (1995) The role of urocanic acid in UV-induced immunosuppression: recent advances (1992–1994). Photochem Photobiol 62(2):209–217

    Article  CAS  PubMed  Google Scholar 

  65. Kaneko K, Travers JB, Matsui MS, Young AR, Norval M, Walker SL (2009) cis-Urocanic acid stimulates primary human keratinocytes independently of serotonin or platelet-activating factor receptors. J Investig Dermatol 129(11):2567–2573. doi:10.1038/jid.2009.129

    Article  CAS  PubMed  Google Scholar 

  66. Gibbs NK, Norval M (2011) Urocanic acid in the skin: a mixed blessing? J Investig Dermatol 131(1):14–17. doi:10.1038/jid.2010.276

    Article  CAS  PubMed  Google Scholar 

  67. Kaneko K, Smetana-Just U, Matsui M, Young AR, John S, Norval M, Walker SL (2008) cis-Urocanic acid initiates gene transcription in primary human keratinocytes. J Immunol 181(1):217–224

    Article  CAS  PubMed  Google Scholar 

  68. Ullrich SE (2005) Mechanisms underlying UV-induced immune suppression. Mutat Res 571(1–2):185–205. doi:10.1016/j.mrfmmm.2004.06.059

    Article  CAS  PubMed  Google Scholar 

  69. Chacon-Salinas R, Limon-Flores AY, Chavez-Blanco AD, Gonzalez-Estrada A, Ullrich SE (2011) Mast cell-derived IL-10 suppresses germinal center formation by affecting T follicular helper cell function. J Immunol 186(1):25–31. doi:10.4049/jimmunol.1001657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Ullrich S, Byrne S (2012) The immunologic revolution: photoimmunology. J Investig Dermatol 132(3 Pt 2):896–905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Hart PH, Gorman S, Finlay-Jones JJ (2011) Modulation of the immune system by UV radiation: more than just the effects of vitamin D? Nat Rev Immunol 11(9):584–596

    Article  CAS  PubMed  Google Scholar 

  72. Raj D, Brash DE, Grossman D (2006) Keratinocyte apoptosis in epidermal development and disease. J Investig Dermatol 126(2):243–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Erb P, Ji J, Kump E, Mielgo A, Wernli M (2008) Apoptosis and Pathogenesis of Melanoma and Nonmelanoma Skin Cancer Sunlight, Vitamin D and Skin Cancer. In: Reichrath J (ed) Advances in experimental medicine and biology, vol 624. Springer, New York, pp 283–295. doi:10.1007/978-0-387-77574-6_22

    Google Scholar 

  74. Ji J, Kump E, Wernli M, Erb P (2008) Gene silencing of transcription factor Gli2 inhibits basal cell carcinomalike tumor growth in vivo. Int J Cancer 122(1):50–56. doi:10.1002/ijc.23023

    Article  CAS  PubMed  Google Scholar 

  75. Adhami VM, Syed DN, Khan N, Afaq F (2008) Phytochemicals for prevention of solar ultraviolet radiation-induced damages. Photochem Photobiol 84(2):489–500. doi:10.1111/j.1751-1097.2007.00293.x

    Article  CAS  PubMed  Google Scholar 

  76. Afaq F, Adhami VM, Mukhtar H (2005) Photochemoprevention of ultraviolet B signaling and photocarcinogenesis. Mutat Res Fundam Mol Mech Mutagen 571(1–2):153–173. doi:10.1016/j.mrfmmm.2004.07.019

    Article  CAS  Google Scholar 

  77. Svobodová A, Psotová J, Walterová D (2003) Natural phenolics in the prevention of UV-induced skin damage. A review. Biomed Pap 147(2):137–145

    Article  Google Scholar 

  78. Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S, Beer H-D (2007) The inflammasome mediates UVB-induced activation and secretion of interleukin-1β by keratinocytes. Curr Biol 17(13):1140–1145. doi:10.1016/j.cub.2007.05.074

    Article  CAS  PubMed  Google Scholar 

  79. Yaar M, Gilchrest BA (2007) Photoageing: mechanism, prevention and therapy. Br J Dermatol 157(5):874–887. doi:10.1111/j.1365-2133.2007.08108.x

    Article  CAS  PubMed  Google Scholar 

  80. Narayanan DL, Saladi RN, Fox JL (2010) Ultraviolet radiation and skin cancer. Int J Dermatol 49(9):978–986. doi:10.1111/j.1365-4632.2010.04474.x

    Article  PubMed  Google Scholar 

  81. Kim K (2012) Neuroimmunological mechanism of pruritus in atopic dermatitis focused on the role of serotonin. Biomol Ther 20(6):506–512. doi:10.4062/biomolther.2012.20.6.506

    Article  CAS  Google Scholar 

  82. Maximino C (2012) Serotonin in the nervous system of vertebrates. In: Serotonin and anxiety: neuroanatomical, pharmacological, and functional aspects. Springer, p 100

  83. Johansen PA, Jennings I, Cotton RG, Kuhn DM (1996) Phosphorylation and activation of tryptophan hydroxylase by exogenous protein kinase A. J Neurochem 66(2):817–823

    Article  CAS  PubMed  Google Scholar 

  84. Slominski A, Pisarchik A, Semak I, Sweatman T, Wortsman J, Szczesniewski A, Slugocki G, McNulty J, Kauser S, Tobin DJ, Jing C, Johansson O (2002) Serotoninergic and melatoninergic systems are fully expressed in human skin. FASEB J Off Publ Fed Am Soc Exp Biol 16(8):896–898. doi:10.1096/fj.01-0952fje

    CAS  Google Scholar 

  85. Slominski A, Pisarchik A, Johansson O, Jing C, Semak I, Slugocki G, Wortsman J (2003) Tryptophan hydroxylase expression in human skin cells. Biochim Biophys Acta 1639(2):80–86

    Article  CAS  PubMed  Google Scholar 

  86. Semak I, Korik E, Naumova M, Wortsman J, Slominski A (2004) Serotonin metabolism in rat skin: characterization by liquid chromatography-mass spectrometry. Arch Biochem Biophys 421(1):61–66

    Article  CAS  PubMed  Google Scholar 

  87. Slominski A, Pisarchik A, Semak I, Sweatman T, Wortsman J (2003) Characterization of the serotoninergic system in the C57BL/6 mouse skin. Eur J Biochem FEBS 270(16):3335–3344

    Article  CAS  Google Scholar 

  88. Bensouilah J, Buck P (2006) Skin structure and function. In: Aromadermatology: aromatherapy in the treatment and care of common skin conditions. Radcliffe, p 249

  89. http://www.dermnetnz.org. 2014

  90. Gillbro JM, Marles LK, Hibberts NA, Schallreuter KU (2004) Autocrine catecholamine biosynthesis and the beta-adrenoceptor signal promote pigmentation in human epidermal melanocytes. J Investig Dermatol 123(2):346–353. doi:10.1111/j.0022-202X.2004.23210.x

    Article  CAS  PubMed  Google Scholar 

  91. Chen JJ, Li Z, Pan H, Murphy DL, Tamir H, Koepsell H, Gershon MD (2001) Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters. J Neurosci Off J Soc Neurosci 21(16):6348–6361

    CAS  Google Scholar 

  92. Thorslund K, Amatya B, Dufva AE, Nordlind K (2013) The expression of serotonin transporter protein correlates with the severity of psoriasis and chronic stress. Arch Dermatol Res 305(2):99–104. doi:10.1007/s00403-012-1303-8

    Article  CAS  PubMed  Google Scholar 

  93. Anlauf M, Schafer MK, Depboylu C, Hartschuh W, Eiden LE, Kloppel G, Weihe E (2004) The vesicular monoamine transporter 2 (VMAT2) is expressed by normal and tumor cutaneous mast cells and Langerhans cells of the skin but is absent from Langerhans cell histiocytosis. J Histochem Cytochem Off J Histochem Soc 52(6):779–788

    Article  CAS  Google Scholar 

  94. Kema IP, de Vries EG, Muskiet FA (2000) Clinical chemistry of serotonin and metabolites. J Chromatogr B Biomed Sci Appl 747(1–2):33–48

    Article  CAS  PubMed  Google Scholar 

  95. Maes M, Kenis G, Bosmans E (2002) The negative immunoregulatory effects of serotonin (5-HT) moduline, an endogenous 5-HT1B receptor antagonist with anti-anxiety properties. Cytokine 19(6):308–311

    Article  CAS  PubMed  Google Scholar 

  96. Ritter M, El-Nour H, Hedblad MA, Butterfield JH, Beck O, Stephanson N, Holst M, Giscombe R, Azmitia EC, Nordlind K (2012) Serotonin and its 5-HT1 receptor in human mastocytosis. Immunopharmacol Immunotoxicol 34(4):679–685. doi:10.3109/08923973.2011.651222

    Article  CAS  PubMed  Google Scholar 

  97. Kushnir-Sukhov NM, Gilfillan AM, Coleman JW, Brown JM, Bruening S, Toth M, Metcalfe DD (2006) 5-hydroxytryptamine induces mast cell adhesion and migration. J Immunol 177(9):6422–6432

    Article  CAS  PubMed  Google Scholar 

  98. Nordlind K, Thorslund K, Lonne-Rahm S, Mohabbati S, Berki T, Morales M, Azmitia EC (2006) Expression of serotonergic receptors in psoriatic skin. Arch Dermatol Res 298(3):99–106. doi:10.1007/s00403-006-0652-6

    Article  CAS  PubMed  Google Scholar 

  99. Akin D, Manier DH, Sanders-Bush E, Shelton RC (2004) Decreased serotonin 5-HT2A receptor-stimulated phosphoinositide signaling in fibroblasts from melancholic depressed patients. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 29(11):2081–2087. doi:10.1038/sj.npp.1300505

    Article  CAS  Google Scholar 

  100. El-Nour H, Lundeberg L, Boman A, Abramowski D, Holst M, Nordlind K (2007) The expression and functional significance of the serotonin(2C) receptor in murine contact allergy. Exp Dermatol 16(8):644–650. doi:10.1111/j.1600-0625.2007.00573.x

    Article  CAS  PubMed  Google Scholar 

  101. Ameisen JC, Meade R, Askenase PW (1989) A new interpretation of the involvement of serotonin in delayed-type hypersensitivity. Serotonin-2 receptor antagonists inhibit contact sensitivity by an effect on T cells. J Immunol 142(9):3171–3179

    CAS  PubMed  Google Scholar 

  102. Zhang Q, Yao Y, Konger RL, Sinn AL, Cai S, Pollok KE, Travers JB (2008) UVB radiation-mediated inhibition of contact hypersensitivity reactions is dependent on the platelet-activating factor system. J Investig Dermatol 128(7):1780–1787. doi:10.1038/sj.jid.5701251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Shen L, Ji HF (2009) Molecular basis for cis-urocanic acid as a 5-HT(2A) receptor agonist. Bioorg Med Chem Lett 19(18):5307–5309. doi:10.1016/j.bmcl.2009.07.143

    Article  CAS  PubMed  Google Scholar 

  104. Correale J, Farez MF (2013) Modulation of multiple sclerosis by sunlight exposure: role of cis-urocanic acid. J Neuroimmunol 261(1–2):134–140. doi:10.1016/j.jneuroim.2013.05.014

    Article  CAS  PubMed  Google Scholar 

  105. Gibbs NK, Tye J, Norval M (2008) Recent advances in urocanic acid photochemistry, photobiology and photoimmunology. Photochem Photobiol Sci Off J Eur Photochem Assoc Eur Soc Photobiol 7(6):655–667. doi:10.1039/b717398a

    CAS  Google Scholar 

  106. Slominski A, Pisarchik A, Zbytek B, Tobin DJ, Kauser S, Wortsman J (2003) Functional activity of serotoninergic and melatoninergic systems expressed in the skin. J Cell Physiol 196(1):144–153. doi:10.1002/jcp.10287

    Article  CAS  PubMed  Google Scholar 

  107. Hong Y, Ji H, Wei H (2006) Topical ketanserin attenuates hyperalgesia and inflammation in arthritis in rats. Pain 124(1–2):27–33. doi:10.1016/j.pain.2006.03.010

    Article  CAS  PubMed  Google Scholar 

  108. Wang D, Gao Y, Ji H, Hong Y (2010) Topical and systemic administrations of ketanserin attenuate hypersensitivity and expression of CGRP in rats with spinal nerve ligation. Eur J Pharmacol 627(1–3):124–130. doi:10.1016/j.ejphar.2009.11.011

    Article  CAS  PubMed  Google Scholar 

  109. Zhu CB, Lindler KM, Owens AW, Daws LC, Blakely RD, Hewlett WA (2010) Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 35(13):2510–2520. doi:10.1038/npp.2010.116

    Article  CAS  Google Scholar 

  110. Kroeze Y, Zhou H, Homberg JR (2012) The genetics of selective serotonin reuptake inhibitors. Pharmacol Ther 136(3):375–400. doi:10.1016/j.pharmthera.2012.08.015

    Article  CAS  PubMed  Google Scholar 

  111. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389. doi:10.1126/science.1083968

    Article  CAS  PubMed  Google Scholar 

  112. http://www.chemicalize.org/ (2014)

  113. http://pubchem.ncbi.nlm.nih.gov (2014)

  114. http://www.abcam.com (2014)

  115. http://en.chembase.cn (2014)

  116. http://www.sigmaaldrich.com (2014)

  117. http://www.drugbank.ca (2014)

  118. http://www.selleckchem.com/ (2014)

  119. https://clinicaltrials.gov (2014)

Download references

Authors Contributions

ACM did the main bibliographic search and wrote the main sections of the manuscript. AA/SS and SR/HR/HO revised the photocarcinogenesis and serotonin sections, respectively. All authors participated in review’s design, coordination, and final revision.

Conflict of Interests

All authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreia Ascenso.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table 1

5-HT1R Agonists: chemical, biological and therapeutic properties of new and commercial drugs [112119]. NF = Not Found; NA = Not Applicable. (DOCX 99 kb)

Table 2

5-HT2R Antagonists: chemical, biological and therapeutic properties of new drugs (Table 2A) and commercialized drugs (Table 2B) [112119]. NF = Not Found; NA = Not Applicable Note: some solubility data may vary depending on the literature source. (DOCX 500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menezes, A.C., Raposo, S., Simões, S. et al. Prevention of Photocarcinogenesis by Agonists of 5-HT1A and Antagonists of 5-HT2A Receptors. Mol Neurobiol 53, 1145–1164 (2016). https://doi.org/10.1007/s12035-014-9068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9068-z

Keywords

Navigation