Skip to main content

Advertisement

Log in

Transient Receptor Potential Vanilloid 4-Induced Modulation of Voltage-Gated Sodium Channels in Hippocampal Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Transient receptor potential vanilloid 4 (TRPV4) is reported to control the resting membrane potential and increase excitability in many types of cells. Voltage-gated sodium channels (VGSCs) play an important role in initiating action potentials in neurons. However, whether VGSCs can be modulated by the activation of TRPV4 in hippocampal pyramidal neurons remains unknown. In this study, we tested the effect of TRPV4 agonists (GSK1016790A and 4α-PDD) on voltage-gated sodium current (I Na) in hippocampal CA1 pyramidal neurons and the protein levels of α/β-subunit of VGSCs in the hippocampus of mice subjected to intracerebroventricular (icv.) injection of GSK1016790A (GSK-injected mice). Herein, we report that I Na was inhibited by acute application of GSK1016790A or 4α-PDD. In the presence of TRPV4 agonists, the voltage-dependent inactivation curve shifted to the hyperpolarization, whereas the voltage-dependent activation curve remained unchanged. The TRPV4 agonist-induced inhibition of I Na was blocked by the TRPV4 antagonist or tetrodotoxin. Moreover, blocking protein kinase A (PKA) markedly attenuated the GSK1016790A-induced inhibition of I Na, whereas antagonism of protein kinase C or p38 mitogen-activated protein kinase did not change GSK1016790A action. Finally, the protein levels of Nav1.1, Nav1.2, and Nav1.6 in the hippocampus increased in GSK-injected mice, whereas those of Nav1.3 and Navβ1 remained nearly unchanged. We conclude that I Na is inhibited by the acute activation of TRPV4 through PKA signaling pathway in hippocampal pyramidal neurons, but protein expression of α-subunit of VGSCs is increased by sustained TRPV4 activation, which may compensate for the acute inhibition of I Na and provide a possibility for hyper-excitability upon sustained TRPV4 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nilius B, Szallasi A (2014) Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 66(3):676–814

    Article  PubMed  Google Scholar 

  2. Vincent F, Duncton MA (2011) TRPV4 agonists and antagonists. Curr Top Med Chem 11(17):2216–2226

    Article  CAS  PubMed  Google Scholar 

  3. Nilius B, Voets T (2013) The puzzle of TRPV4 channelopathies. EMBO Rep 14(2):152–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S, Altier C, Cenac N, Zamponi GW, Bautista-Cruz F, Lopez CB, Joseph EK, Levine JD, Liedtke W, Vanner S, Vergnolle N, Geppetti P, Bunnett NW (2007) Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578(Pt 3):715–733

    Article  CAS  PubMed  Google Scholar 

  5. Egbuniwe O, Grover S, Duggal AK, Mavroudis A, Yazdi M, Renton T, Di Silvio L, Grant AD (2014) TRPA1 and TRPV4 activation in human odontoblasts stimulates ATP release. J Dent Res 93(9):911–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ryskamp DA, Witkovsky P, Barabas P, Huang W, Koehler C, Akimov NP, Lee SH, Chauhan S, Xing W, Rentería RC, Liedtke W, Krizaj D (2011) The polymodal ion channel transient receptor potential vanilloid 4 modulates calcium flux, spiking rate, and apoptosis of mouse retinal ganglion cells. J Neurosci 31(19):7089–7101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen L, Liu C, Liu L (2009) Osmolality-induced tuning of action potentials in trigeminal ganglion neurons. Neurosci Lett 452(1):79–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shibasaki K, Suzuki M, Mizuno A, Tominaga M (2007) Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4. J Neurosci 27(7):1566–1575

    Article  CAS  PubMed  Google Scholar 

  9. Li L, Yin J, Jie PH, Lu ZH, Zhou LB, Chen L, Chen L (2013) Transient receptor potential vanilloid 4 mediates hypotonicity-induced enhancement of synaptic transmission in hippocampal slices. CNS Neurosci Ther 19(11):854–862

    Article  CAS  PubMed  Google Scholar 

  10. Yu FH, Catterall WA (2003) Overview of the voltage-gated sodium channel family. Genome Biol 4(3):207

    Article  PubMed  PubMed Central  Google Scholar 

  11. Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltagegated sodium channels. Neuron 26(1):13–25

    Article  CAS  PubMed  Google Scholar 

  12. Scheuer T (2011) Regulation of sodium channel activity by phosphorylation. Semin Cell Dev Biol 22(2):160–165

    Article  CAS  PubMed  Google Scholar 

  13. Gasser A, Cheng X, Gilmore ES, Tyrrell L, Waxman SG, Dib-Hajj SD (2010) Two Nedd4-binding motifs underlie modulation of sodium channel Nav1.6 by p38 MAPK. J Biol Chem 285(34):26149–26161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wittmack EK, Rush AM, Hudmon A, Waxman SG, Dib-Hajj SD (2005) Voltage-gated sodium channel Nav1.6 is modulated by p38 mitogen-activated protein kinase. J Neurosci 25(28):6621–6630

    Article  CAS  PubMed  Google Scholar 

  15. Chen L, Liu C, Liu L, Cao X (2009) Changes in osmolality modulate voltage-gated sodium channels in trigeminal ganglion neurons. Neurosci Res 64:199–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin L, Liu C, Chen L, Chen L (2011) Hypotonicity modulates tetrodotoxin-sensitive sodium current in trigeminal ganglion neurons. Mol Pain 7:27–32

    Google Scholar 

  17. Chen L, Liu C, Liu L (2008) The modulation of voltage-gated potassium channels by anisotonicity in trigeminal ganglion neurons. Neuroscience 154:482–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen L, Liu C, Liu L (2008) Changes in osmolality modulate voltage-gated calcium channels in trigeminal ganglion neurons. Brain Res 1208:56–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu L, Chen L, Liedtke W, Simon SA (2007) Changes in osmolality sensitize the response to capsaicin in trigeminal sensory neurons. J Neurophysiol 97:2001–2015

    Article  CAS  PubMed  Google Scholar 

  20. Li L, Qu W, Zhou L, Lu Z, Jie P, Chen L, Chen L (2013) Activation of transient receptor potential vanilloid 4 increases NMDA-activated current in hippocampal pyramidal neurons. Front Cell Neurosci 7:17–26

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cantrell AR, Smith RD, Goldin AL, Scheuer T, Catterall WA (1997) Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel αsubunit. J Neurosci 17:7330–7338

    CAS  PubMed  Google Scholar 

  22. Cantrell AR, Ma JY, Scheuer T, Catterall WA (1996) Muscarinic modulation of sodium current by activation of protein kinase C in rat hippocampal neurons. Neuron 16:1019–1026

    Article  CAS  PubMed  Google Scholar 

  23. Lidtke W, Tobin DM, Bargmann CI, Friedman JM (2003) Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorbditis elegans. Proc Natl Acad Sci U S A 100(Suppl 2):14531–14536

    Article  Google Scholar 

  24. Borodinsky LN, Spitzer NC (2006) Second messenger pas de deux: the coordinated dance between calcium and cAMP. Sci STKE (336):pe22

  25. Fridlyand LE, Harbeck MC, Roe MW, Philipson LH (2007) Regulation of cAMP dynamics by Ca2+ and G protein-coupled receptors in the pancreatic beta-cell: a computational approach. Am J Physiol Cell Physiol 293(6):C1924–C1933

    Article  CAS  PubMed  Google Scholar 

  26. Willoughby D, Cooper DM (2006) Ca2+ stimulation of adenylyl cyclase generates dynamic oscillations in cyclic AMP. J Cell Sci 119(Pt 5):828–836

    Article  CAS  PubMed  Google Scholar 

  27. Landa LR Jr, Harbeck M, Kaihara K, Chepurny O, Kitiphongspattana K, Graf O, Nikolaev VO, Lohse MJ, Holz GG, Roe MW (2005) Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 beta-cell line. J Biol Chem 280(35):31294–31302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seale AP, Watanabe S, Grau EG (2012) Osmoreception: perspectives on signal transduction and environmental modulation. Gen Comp Endocrinol 176(3):354–360

    Article  CAS  PubMed  Google Scholar 

  29. Liu L, Oortgiesen M, Li L, Simon SA (2001) Capsaicin inhibits activation of voltage-gated sodium currents in capsaicin-sensitive trigeminal ganglion neurons. J Neurophysiol 85(2):745–758

    CAS  PubMed  Google Scholar 

  30. Onizuka S, Yonaha T, Tamura R, Hosokawa N, Kawasaki Y, Kashiwada M, Shirasaka T, Tsuneyoshi I (2011) Capsaicin indirectly suppresses voltage-gated Na+ currents through TRPV1 in rat dorsal root ganglion neurons. Anesth Analg 112(3):703–709

  31. Chen WN, Lee CH, Lin SH, Wong CW, Sun WH, Wood JN, Chen CC (2014) Roles of ASIC3, TRPV1, and NAv1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia. Mol Pain 10:40–54

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lisman JE (1997) Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci 20(1):38–43

    Article  CAS  PubMed  Google Scholar 

  33. Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8(6):451–465

    Article  CAS  PubMed  Google Scholar 

  34. Johnston D, Hoffman DA, Colbert CM, Magee JC (1999) Regulation of back-propagating action potentials in hippocampal neurons. Curr Opin Neurobiol 9(3):288–292

    Article  CAS  PubMed  Google Scholar 

  35. Johnston J, Forsythe ID, Kopp-Scheinpflug C (2010) Going native: voltage-gated potassium channels controlling neuronal excitability. J Physiol 588(Pt 17):3187–3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vacher H, Mohapatra DP, Trimmer JS (2008) Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev 88(4):1407–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jensen MS, Azouz R, Yaari Y (1996) Spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. J Physiol 492(Pt 1):199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Magee JC, Carruth M (1999) Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. J Neurophysiol 82(4):1895–1901

    CAS  PubMed  Google Scholar 

  39. Azouz R, Jensen MS, Yaari Y (1996) Ionic basis of spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. J Physiol 492(Pt1):211–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yue C, Yaari Y (2004) KCNQ/M channels control spike afterdepolarization in hippocampal neurons. J Neurosci 24(19):4614–4624

    Article  CAS  PubMed  Google Scholar 

  41. Cao DS, Yu SQ, Premkumar LS (2009) Modulation of transient receptor potential vanilloid 4-mediated membrane currents and synaptic transmission by protein kinase C. Mol Pain 5:5–17

    PubMed  PubMed Central  Google Scholar 

  42. Hunt RF, Hortopan GA, Gillespie A, Baraban SC (2012) A novel zebrafish model of hyperthermia-induced seizures reveals a role for TRPV4 channels and NMDA-type glutamate receptors. Exp Neurol 237(1):199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (31271206), Research Award Fund for Outstanding Young Teachers in Nanjing Medical University (JX2161015033) and Qing Lan Project of Jiangsu province (2014–2017).

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

I Na and GSK1016790A-evoked current recorded in hippocampal CA1 pyramidal neurons. When recording TRPV4-mediated current, 500 nM GSK1016790A and 0.3 μM TTX were added to mASCF and a ramp protocol depolarizing from −80 to +80 mV over 700 ms was used. Typical recordings show that I Na (a) and GSK1016790A-induced current (b) were recorded in the same neuron. (GIF 5 kb)

High resolution image (TIFF 1240 kb)

Supplementary Fig. 2

Effect of BAPTA-AM on GSK1016790A-induced inhibition of I Na in hippocampal CA1 pyramidal neurons. GAK1016790A-induced inhibition of I Na was partially blocked by pre-application of BAPTA-AM (10 μM). The dose of BATPA-AM was used as previously reported [1] *p<0.05 vs. GSK1016790A 1. Aflaki M, Qi XY, Xiao L, Ordog B, Tadevosyan A, Luo X, Maguy A, Shi Y, Tardif JC, Nattel S (2014) Exchange protein directly activated by cAMP mediates slow delayed-rectifier current remodeling by sustained β-adrenergic activation in guinea pig hearts. Circ Res 114(6):993–1003. (GIF 18 kb)

High resolution image (TIFF 20629 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Z., Jie, P., Tian, Y. et al. Transient Receptor Potential Vanilloid 4-Induced Modulation of Voltage-Gated Sodium Channels in Hippocampal Neurons. Mol Neurobiol 53, 759–768 (2016). https://doi.org/10.1007/s12035-014-9038-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9038-5

Keywords

Navigation