Skip to main content

Advertisement

Log in

TRPC Channels: Prominent Candidates of Underlying Mechanism in Neuropsychiatric Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alterations in intracellular Ca2+ concentration ([Ca2+]i) play a crucial role in fundamental cellular events from transcriptional regulation to migration and proliferation. The transient receptor potential (TRP) channels contribute to changes in [Ca2+]i by providing or modulating Ca2+ entry pathways, as well as by releasing Ca2+ from intracellular stores. On the basis of sequence homology, the TRP family can be divided into seven subfamilies: the TRPC (“canonical”) family, the TRPV (“vanilloid”) family, the TRPM (“melastatin”) family, the TRPP (“polycystin”) family, the TRPML (“mucolipin”) family, the TRPA (“ankyrin”) family, and the TRPN (“NOMPC”) family. In this review, we focus on the physiology and pathophysiology of mammalian TRPC channels in the nervous system. Seven mammalian TRPC proteins (TRPC1–7) have been described and are widely distributed in the brain from early embryonic days till adulthood, with the exception of TRPC2. TRPC channels are nonselective Ca2+-permeable channels, which can be activated by G-protein-coupled receptors and receptor tyrosine kinases. These channels have been reported to act as essential cellular sensors in multiple processes during neuronal development, including neural stem cell proliferation and differentiation, neuronal survival, neurite outgrowth and axon path finding, and synaptogenesis. Not surprisingly, studies on these channels also provide new insights into underlying mechanisms of various neuropsychiatric disorders. The present review summarizes the expressions of all TRPC subtypes in different brain regions and different neural cell types, aiming to serve as a useful reference for future studies in this field. We also discuss the most updated evidence implicating involvement of TRPC channels in the generation of pathophysiological states in nervous system and their potentials as being promising targets for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21

    Article  CAS  PubMed  Google Scholar 

  2. Brini M, Cali T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71(15):2787–2814

    Article  CAS  PubMed  Google Scholar 

  3. Tai YL, Feng SJ, Du WL, Wang YZ (2009) Functional roles of TRPC channels in the developing brain. Pflugers Arch 458(2):283–289

    Article  CAS  PubMed  Google Scholar 

  4. Vannier B, Peyton M, Boulay G, Brown D, Qin N, Jiang M, Zhu X, Birnbaumer L (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc Natl Acad Sci U S A 96(5):2060–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  CAS  PubMed  Google Scholar 

  6. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87(1):165–217

    Article  CAS  PubMed  Google Scholar 

  7. Trebak M, Lemonnier L, Smyth JT, Vazquez G, Putney JW Jr (2007) Phospholipase C-coupled receptors and activation of TRPC channels. Handb Exp Pharmacol 179:593–614

    Article  CAS  Google Scholar 

  8. Nilius B (2003) From TRPs to SOCs, CCEs, and CRACs: consensus and controversies. Cell Calcium 33(5–6):293–298

    Article  CAS  PubMed  Google Scholar 

  9. Lemonnier L, Trebak M, Putney JW Jr (2008) Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. Cell Calcium 43(5):506–514

    Article  CAS  PubMed  Google Scholar 

  10. Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6(8):709–720

    Article  CAS  PubMed  Google Scholar 

  11. Abramowitz J, Birnbaumer L (2009) Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 23(2):297–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morelli MB, Amantini C, Liberati S, Santoni M, Nabissi M (2013) TRP channels: new potential therapeutic approaches in CNS neuropathies. CNS Neurol Disord Drug Targets 12(2):274–293

    Article  CAS  PubMed  Google Scholar 

  13. Benarroch EE (2008) TRP channels: functions and involvement in neurologic disease. Neurology 70(8):648–652

    Article  PubMed  Google Scholar 

  14. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278(40):39014–39019

    Article  PubMed  Google Scholar 

  15. Li HS, Xu XZS, Montell C (1999) Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron 24(1):261–273

    Article  CAS  PubMed  Google Scholar 

  16. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29(3):645–655

    Article  CAS  PubMed  Google Scholar 

  17. Zhou J, Du WL, Zhou KC, Tai YL, Yao HL, Jia YC, Ding YQ, Wang YZ (2008) Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci 11(7):741–743

    Article  CAS  PubMed  Google Scholar 

  18. Singh BB, Lockwich TP, Bandyopadhyay BC, Liu XB, Bollimuntha S, Brazer SC, Combs C, Das S, Leenders AGM, Sheng ZH, Knepper MA, Ambudkar SV, Ambudkar IS (2004) VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx. Mol Cell 15(4):635–646

    Article  CAS  PubMed  Google Scholar 

  19. Otsuka Y, Sakagami H, Owada Y, Kondo H (1998) Differential localization of mRNAs for mammalian trps, presumptive capacitative calcium entry channels, in the adult mouse brain. Tohoku J Exp Med 185(2):139–146

    Article  CAS  PubMed  Google Scholar 

  20. Fowler MA, Sidiropoulou K, Ozkan ED, Phillips CW, Cooper DC (2007) Corticolimbic expression of TRPC4 and TRPC5 channels in the rodent brain. PLoS One 2(6):e573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Mizuno N, Kitayama S, Saishin Y, Shimada S, Morita K, Mitsuhata C, Kurihara H, Dohi T (1999) Molecular cloning and characterization of rat trp homologues from brain. Brain Res Mol Brain Res 64(1):41–51

    Article  CAS  PubMed  Google Scholar 

  22. Fusco FR, Martorana A, Giampa C, De March Z, Vacca F, Tozzi A, Longone P, Piccirilli S, Paolucci S, Sancesario G, Mercuri NB, Bernardi G (2004) Cellular localization of TRPC3 channel in rat brain: preferential distribution to oligodendrocytes. Neurosci Lett 365(2):137–142

    Article  CAS  PubMed  Google Scholar 

  23. Zeng C, Zhou P, Jiang T, Yuan C, Ma Y, Feng L, Liu R, Tang W, Long X, Xiao B, Tian F (2014) Upregulation and diverse roles of TRPC3 and TRPC6 in synaptic reorganization of the mossy fiber pathway in temporal lobe epilepsy. Mol Neurobiol. doi:10.1007/s12035-014-8871-x

  24. Tu P, Kunert-Keil C, Lucke S, Brinkmeier H, Bouron A (2009) Diacylglycerol analogues activate second messenger-operated calcium channels exhibiting TRPC-like properties in cortical neurons. J Neurochem 108(1):126–138

    Article  CAS  PubMed  Google Scholar 

  25. Freichel M, Vennekens R, Olausson J, Stolz S, Philipp SE, Weissgerber P, Flockerzi V (2005) Functional role of TRPC proteins in native systems: implications from knockout and knock-down studies. J Physiol Lond 567(1):59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274(39):27359–27370

    Article  CAS  PubMed  Google Scholar 

  27. Kunert-Keil C, Bisping F, Kruger J, Brinkmeier H (2006) Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 7:159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD, Pangalos MN (2002) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Mol Brain Res 109(1–2):95–104

    Article  CAS  PubMed  Google Scholar 

  29. Tai YL, Feng SJ, Ge RL, Du WL, Zhang XX, He ZH, Wang YZ (2008) TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J Cell Sci 121(14):2301–2307

    Article  CAS  PubMed  Google Scholar 

  30. von Bohlen, Halbach O, Hinz U, Unsicker K, Egorov AV (2005) Distribution of TRPC1 and TRPC5 in medial temporal lobe structures of mice. Cell Tissue Res 322(2):201–206

    Article  CAS  Google Scholar 

  31. Kim DS, Ryu HJ, Kim JE, Kang TC (2013) The reverse roles of transient receptor potential canonical channel-3 and −6 in neuronal death following pilocarpine-induced status epilepticus. Cell Mol Neurobiol 33(1):99–109

    Article  CAS  PubMed  Google Scholar 

  32. Chung YH, Ahn HS, Kim D, Shin DH, Kim SS, Kim KY, Lee WB, Cha CI (2006) Immunohistochemical study on the distribution of TRPC channels in the rat hippocampus. Brain Res 1085:132–137

    Article  CAS  PubMed  Google Scholar 

  33. Nagy GA, Botond G, Borhegyi Z, Plummer NW, Freund TF, Hajos N (2013) DAG-sensitive and Ca(2+) permeable TRPC6 channels are expressed in dentate granule cells and interneurons in the hippocampal formation. Hippocampus 23(3):221–232

    Article  CAS  PubMed  Google Scholar 

  34. Amaral MD, Pozzo-Miller L (2007) TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci 27(19):5179–5189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ, Yuan XB (2005) Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434(7035):894–898

    Article  CAS  PubMed  Google Scholar 

  36. Garcia RL, Schilling WP (1997) Differential expression of mammalian TRP homologues across tissues and cell lines. Biochem Biophys Res Commun 239(1):279–283

    Article  CAS  PubMed  Google Scholar 

  37. Jia YC, Zhou J, Tai YL, Wang YZ (2007) TRPC channels promote cerebellar granule neuron survival. Nat Neurosci 10(5):559–567

    Article  CAS  PubMed  Google Scholar 

  38. Kato AS, Knierman MD, Siuda ER, Isaac JT, Nisenbaum ES, Bredt DS (2012) Glutamate receptor delta2 associates with metabotropic glutamate receptor 1 (mGluR1), protein kinase Cgamma, and canonical transient receptor potential 3 and regulates mGluR1-mediated synaptic transmission in cerebellar Purkinje neurons. J Neurosci 32(44):15296–15308

    Article  CAS  PubMed  Google Scholar 

  39. Berg AP, Sen N, Bayliss DA (2007) TrpC3/C7 and Slo2.1 are molecular targets for metabotropic glutamate receptor signaling in rat striatal cholinergic interneurons. J Neurosci 27(33):8845–8856

    Article  CAS  PubMed  Google Scholar 

  40. Chung YH, Kim D, Moon NJ, Oh CS, Lee E, Shin DH, Kim SS, Lee WB, Lee JY, Cha CI (2007) Immunohistochemical study on the distribution of canonical transient receptor potential channels in rat basal ganglia. Neurosci Lett 422(1):18–23

    Article  CAS  PubMed  Google Scholar 

  41. Martorana A, Giampa C, DeMarch Z, Viscomi MT, Patassini S, Sancesario G, Bernardi G, Fusco FR (2006) Distribution of TRPC1 receptors in dendrites of rat substantia nigra: a confocal and electron microscopy study. Eur J Neurosci 24(3):732–738

    Article  PubMed  Google Scholar 

  42. Zhou FW, Matta SG, Zhou FM (2008) Constitutively active TRPC3 channels regulate basal ganglia output neurons. J Neurosci 28(2):473–482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. De March Z, Giampa C, Patassini S, Bernardi G, Fusco FR (2006) Cellular localization of TRPC5 in the substantia nigra of rat. Neurosci Lett 402(1–2):35–39

    Article  PubMed  CAS  Google Scholar 

  44. Giampa C, DeMarch Z, Patassini S, Bernardi G, Fusco FR (2007) Immunohistochemical localization of TRPC6 in the rat substantia nigra. Neurosci Lett 424(3):170–174

    Article  CAS  PubMed  Google Scholar 

  45. Tozzi A, Bengtson CP, Longone P, Carignani C, Fusco FR, Bernardi G, Mercuri NB (2003) Involvement of transient receptor potential-like channels in responses to mGluR-I activation in midbrain dopamine neurons. Eur J Neurosci 18(8):2133–2145

    Article  PubMed  Google Scholar 

  46. Riccio A, Li Y, Tsvetkov E, Gapon S, Yao GL, Smith KS, Engin E, Rudolph U, Bolshakov VY, Clapham DE (2014) Decreased anxiety-like behavior and Galphaq/11-dependent responses in the amygdala of mice lacking TRPC4 channels. J Neurosci 34(10):3653–3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Riccio A, Li Y, Moon J, Kim KS, Smith KS, Rudolph U, Gapon S, Yao GL, Tsvetkov E, Rodig SJ, Van’t Veer A, Meloni EG, Carlezon WA, Jr., Bolshakov VY, Clapham DE (2009) Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 137(4):761–772

  48. Faber ESL, Sedlak P, Vidovic M, Sah P (2006) Synaptic activation of transient receptor potential channels by metabotropic glutamate receptors in the lateral amygdala. Neuroscience 137(3):781–794

    Article  CAS  PubMed  Google Scholar 

  49. Wu D, Huang W, Richardson PM, Priestley JV, Liu M (2008) TRPC4 in rat dorsal root ganglion neurons is increased after nerve injury and is necessary for neurite outgrowth. J Biol Chem 283(1):416–426

    Article  CAS  PubMed  Google Scholar 

  50. Elg S, Marmigere F, Mattsson JP, Ernfors P (2007) Cellular subtype distribution and developmental regulation a TRPC channel members in the mouse dorsal root ganglion. J Comp Neurol 503(1):35–46

    Article  CAS  PubMed  Google Scholar 

  51. Wu XY, Zagranichnaya TK, Gurda GT, Eves EM, Villereal ML (2004) A TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19-7 hippocampal neuronal cells. J Biol Chem 279(42):43392–43402

    Article  CAS  PubMed  Google Scholar 

  52. Dhar M, Wayman GA, Zhu M, Lambert TJ, Davare MA, Appleyard SM (2014) Leptin-induced spine formation requires TrpC channels and the CaM kinase cascade in the hippocampus. J Neurosci 34(30):10022–10033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Greka A, Navarro B, Oancea E, Duggan A, Clapham DE (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6(8):837–845

    Article  CAS  PubMed  Google Scholar 

  54. Davare MA, Fortin DA, Saneyoshi T, Nygaard S, Kaech S, Banker G, Soderling TR, Wayman GA (2009) Transient receptor potential canonical 5 channels activate Ca2+/calmodulin kinase I gamma to promote axon formation in hippocampal neurons. J Neurosci 29(31):9794–9808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ (2003) Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426(6964):285–291

    Article  CAS  PubMed  Google Scholar 

  56. Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V, Birnbaumer L, Konnerth A (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59(3):392–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu G, Lu ZH, Obukhov AG, Nowycky MC, Ledeen RW (2007) Induction of calcium influx through TRPC5 channels by cross-linking of GM1 ganglioside associated with alpha5beta1 integrin initiates neurite outgrowth. J Neurosci 27(28):7447–7458

    Article  CAS  PubMed  Google Scholar 

  58. Pizzo P, Burgo A, Pozzan T, Fasolato C (2001) Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes. J Neurochem 79(1):98–109

    Article  CAS  PubMed  Google Scholar 

  59. Malarkey EB, Ni Y, Parpura V (2008) Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia 56(8):821–835

    Article  PubMed  Google Scholar 

  60. Munsch T, Freichel M, Flockerzi V, Pape HC (2003) Contribution of transient receptor potential channels to the control of GABA release from dendrites. Proc Natl Acad Sci U S A 100(26):16065–16070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pla AF, Maric D, Brazer SC, Giacobini P, Liu XB, Chang YH, Ambudkar IS, Barker JL (2005) Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca2+ entry and embryonic rat neural stem cell proliferation. J Neurosci 25(10):2687–2701

    Article  CAS  Google Scholar 

  62. Bollimuntha S, Singh BB, Shavali S, Sharma SK, Ebadi M (2005) TRPC1-mediated inhibition of 1-methyl-4-phenylpyridinium ion neurotoxicity in human SH-SY5Y neuroblastoma cells. J Biol Chem 280(3):2132–2140

    Article  CAS  PubMed  Google Scholar 

  63. Bollimuntha S, Ebadi M, Singh BB (2006) TRPC1 protects human SH-SY5Y cells against salsolinol-induced cytotoxicity by inhibiting apoptosis. Brain Res 1099:141–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kumar S, Chakraborty S, Barbosa C, Brustovetsky T, Brustovetsky N, Obukhov AG (2012) Mechanisms controlling neurite outgrowth in a pheochromocytoma cell line: the role of TRPC channels. J Cell Physiol 227(4):1408–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Heo DK, Chung WY, Park HW, Yuan JP, Lee MG, Kim JY (2012) Opposite regulatory effects of TRPC1 and TRPC5 on neurite outgrowth in PC12 cells. Cell Signal 24(4):899–906

    Article  CAS  PubMed  Google Scholar 

  66. Leuner K, Kazanski V, Muller M, Essin K, Henke B, Gollasch M, Harteneck C, Muller WE (2007) Hyperforin–a key constituent of St. John’s wort specifically activates TRPC6 channels. FASEB J 21(14):4101–4111

    Article  CAS  PubMed  Google Scholar 

  67. Hui H, McHugh D, Hannan M, Zeng F, Xu SZ, Khan SU, Levenson R, Beech DJ, Weiss JL (2006) Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. J Physiol 572(Pt 1):165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Davare MA, Fortin DA, Saneyoshi T, Nygaard S, Kaech S, Banker G, Soderling TR, Wayman GA (2009) Transient receptor potential canonical 5 channels activate Ca2+/calmodulin kinase Igamma to promote axon formation in hippocampal neurons. J Neurosci 29(31):9794–9808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shim S, Goh EL, Ge SY, Sailor K, Yuan JP, Roderick HL, Bootman MD, Worley PF, Song HJ, Ming GL (2005) XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nat Neurosci 8(6):730–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kerstein PC, Jacques-Fricke BT, Rengifo J, Mogen BJ, Williams JC, Gottlieb PA, Sachs F, Gomez TM (2013) Mechanosensitive TRPC1 channels promote calpain proteolysis of talin to regulate spinal axon outgrowth. J Neurosci 33(1):273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mwanjewe J, Grover AK (2004) Role of transient receptor potential canonical 6 (TRPC6) in non-transferrin-bound iron uptake in neuronal phenotype PC12 cells. Biochem J 378(Pt 3):975–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tesfai Y, Brereton HM, Barritt GJ (2001) A diacylglycerol-activated Ca2+ channel in PC12 cells (an adrenal chromaffin cell line) correlates with expression of the TRP-6 (transient receptor potential) protein. Biochem J 358(Pt 3):717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96(2):245–254

    Article  CAS  PubMed  Google Scholar 

  74. Sossin WS, Barker PA (2007) Something old, something new: BDNF-induced neuron survival requires TRPC channel function. Nat Neurosci 10(5):537–538

    Article  CAS  PubMed  Google Scholar 

  75. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howel DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308(5729):1801–1804

    Article  CAS  PubMed  Google Scholar 

  76. Duenas AM, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain 129:1357–1370

    Article  PubMed  Google Scholar 

  77. Becker EBE, Olivera PL, Glitsch MD, Banks GT, Achilli F, Hardy A, Nolan PM, Fisher EMC, Davies KE (2009) A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc Natl Acad Sci U S A 106(16):6706–6711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sirzen-Zelenskaya A, Zeyse J, Kapfhammer JP (2006) Activation of class I metabotropic glutamate receptors limits dendritic growth of Purkinje cells in organotypic slice cultures. Eur J Neurosci 24(11):2978–2986

    Article  PubMed  Google Scholar 

  79. Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY (2000) Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci 3(2):157–163

    Article  CAS  PubMed  Google Scholar 

  80. Sekerkova G, Kim JA, Nigro MJ, Becker EB, Hartmann J, Birnbaumer L, Mugnaini E, Martina M (2013) Early onset of ataxia in moonwalker mice is accompanied by complete ablation of type II unipolar brush cells and Purkinje cell dysfunction. J Neurosci 33(50):19689–19694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Monaco AP, Neve RL, Colletti-Feener C, Bertelson CJ, Kurnit DM, Kunkel LM (1986) Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 323(6089):646–650

    Article  CAS  PubMed  Google Scholar 

  82. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6):919–928

    Article  CAS  PubMed  Google Scholar 

  83. Tutdibi O, Brinkmeier H, Rudel R, Fohr KJ (1999) Increased calcium entry into dystrophin-deficient muscle fibres of MDX and ADR-MDX mice is reduced by ion channel blockers. J Physiol 515(3):859–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vandebrouck C, Martin D, Schoor MCV, Debaix H, Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158(6):1089–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gervasio OL, Whitehead NP, Yeung EW, Phillips WD, Allen DG (2008) TRPC1 binds to caveolin-3 and is regulated by Src kinase—role in Duchenne muscular dystrophy. J Cell Sci 121(13):2246–2255

    Article  CAS  PubMed  Google Scholar 

  86. Kawasaki BT, Liao YH, Birnbaumer L (2006) Role of Src in C3 transient receptor potential channel function and evidence for a heterogeneous makeup of receptor- and store-operated Ca2+ entry channels. Proc Natl Acad Sci U S A 103(2):335–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Williams IA, Allen DG (2007) The role of reactive oxygen species in the hearts of dystrophin-deficient mdx mice. Am J Physiol Heart Circ Physiol 293(3):H1969–H1977

    Article  CAS  PubMed  Google Scholar 

  88. Jung C, Martins AS, Niggli E, Shirokova N (2008) Dystrophic cardiomyopathy: amplification of cellular damage by Ca2+ signalling and reactive oxygen species-generating pathways. Cardiovasc Res 77(4):766–773

    Article  CAS  PubMed  Google Scholar 

  89. Lockwich TP, Liu XB, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS (2000) Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 275(16):11934–11942

    Article  CAS  PubMed  Google Scholar 

  90. Vandebrouck A, Sabourin J, Rivet J, Balghi H, Sebille S, Kitzis A, Raymond G, Cognard C, Bourmeyster N, Constantin B (2007) Regulation of capacitative calcium entries by alpha 1-syntrophin: association of TRPC1 with dystrophin complex and the PDZ domain of alpha 1-syntrophin. FASEB J 21(2):608–617

    Article  CAS  PubMed  Google Scholar 

  91. Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114(6):777–789

    Article  CAS  PubMed  Google Scholar 

  92. Stiber JA, Zhang ZS, Burch J, Eu JP, Zhang S, Truskey GA, Seth M, Yamaguchi N, Meissner G, Shah R, Worley PF, Williams RS, Rosenberg PB (2008) Mice lacking homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity. Mol Cell Biol 28(8):2637–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee EH, Cherednichenko G, Pessah IN, Allen PD (2006) Functional coupling between TRPC3 and RyR1 regulates the expressions of key triadic proteins. J Biol Chem 281(15):10042–10048

    Article  CAS  PubMed  Google Scholar 

  94. Woo JS, Kim DH, Allen PD, Lee EH (2008) TRPC3-interacting triadic proteins in skeletal muscle. Biochem J 411:399–405

    Article  CAS  PubMed  Google Scholar 

  95. Takamori M (2008) Autoantibodies against TRPC3 and ryanodine receptor in myasthenia gravis. J Neuroimmunol 200(1–2):142–144

    Article  CAS  PubMed  Google Scholar 

  96. Romi F, Aarli JA, Gilhus NE (2007) Myasthenia gravis patients with ryanodine receptor antibodies have distinctive clinical features. Eur J Neurol 14(6):617–620

    Article  CAS  PubMed  Google Scholar 

  97. Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M (2006) Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2(9):494–503

    Article  PubMed  Google Scholar 

  98. Chigurupati S, Venkataraman R, Barrera D, Naganathan A, Madan M, Paul L, Pattisapu JV, Kyriazis GA, Sugaya K, Bushnev S, Lathia JD, Rich JN, Chan SL (2010) Receptor channel TRPC6 is a key mediator of Notch-driven glioblastoma growth and invasiveness. Cancer Res 70(1):418–427

    Article  CAS  PubMed  Google Scholar 

  99. Song M, Chen D, Yu SP (2014) The TRPC channel blocker SKF 96365 inhibits glioblastoma cell growth by enhancing reverse mode of the Na(+) /Ca(2+) exchanger and increasing intracellular Ca(2+). Br J Pharmacol 171(14):3432–3447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nabissi M, Morelli MB, Santoni M, Santoni G (2013) Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis 34(1):48–57

    Article  CAS  PubMed  Google Scholar 

  101. Bryant JA, Finn RS, Slamon DJ, Cloughesy TF, Charles AC (2004) EGF activates intracellular and intercellular calcium signaling by distinct pathways in tumor cells. Cancer Biol Ther 3(12):1243–1249

    Article  CAS  PubMed  Google Scholar 

  102. Odell AF, Scott JL, Van Helden DF (2005) Epidermal growth factor induces tyrosine phosphorylation, membrane insertion, and activation of transient receptor potential channel 4. J Biol Chem 280(45):37974–37987

    Article  CAS  PubMed  Google Scholar 

  103. Bomben VC, Sontheimer HW (2008) Inhibition of transient receptor potential canonical channels impairs cytokinesis in human malignant gliomas. Cell Prolif 41(1):98–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cuddapah VA, Turner KL, Sontheimer H (2013) Calcium entry via TRPC1 channels activates chloride currents in human glioma cells. Cell Calcium 53(3):187–194

    Article  CAS  PubMed  Google Scholar 

  105. Welsh DG, Morielli AD, Nelson MT, Brayden JE (2002) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90(3):248–250

    Article  CAS  PubMed  Google Scholar 

  106. Chen J, Crossland RF, Noorani MMZ, Marrelli SP (2009) Inhibition of TRPC1/TRPC3 by PKG contributes to NO-mediated vasorelaxation. Am J Physiol Heart Circ Physiol 297(1):H417–H424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Thilo F, Suess O, Liu Y, Tepel M (2011) Decreased expression of transient receptor potential channels in cerebral vascular tissue from patients after hypertensive intracerebral hemorrhage. Clin Exp Hypertens 33(8):533–537

    Article  CAS  PubMed  Google Scholar 

  108. Bergdahl A, Gomez MF, Wihlborg AK, Erlinge D, Eyjolfson A, Xu SZ, Beech DJ, Dreja K, Hellstrand P (2005) Plasticity of TRPC expression in arterial smooth muscle: correlation with store-operated Ca2+ entry. Am J Physiol Cell Physiol 288(4):C872–C880

    Article  CAS  PubMed  Google Scholar 

  109. Bergdahl A, Gomez MF, Dreja K, Xu SZ, Adner M, Beech DJ, Broman J, Hellstrand P, Sward K (2003) Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1. Circ Res 93(9):839–847

    Article  CAS  PubMed  Google Scholar 

  110. Kunichika N, Yu Y, Remillard CV, Platoshyn O, Zhang S, Yuan JXJ (2004) Overexpression of TRPC1 enhances pulmonary vasoconstriction induced by capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 287(5):L962–L969

    Article  CAS  PubMed  Google Scholar 

  111. Xie A, Aihara Y, Bouryi VA, Nikitina E, Jahromi BS, Zhang ZD, Takahashi M, Macdonald RL (2007) Novel mechanism of endothelin-1-induced vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 27(10):1692–1701

    Article  CAS  PubMed  Google Scholar 

  112. Dietrich A, Kalwa H, Storch U, Schnitzler MMY, Salanova B, Pinkenburg O, Dubrovska G, Essin K, Gollasch M, Birnbaumer L, Gudermann T (2007) Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Arch 455(3):465–477

    Article  CAS  PubMed  Google Scholar 

  113. Reading SA, Earley S, Waldron BJ, Welsh DG, Brayden JE (2005) TRPC3 mediates pyrimidine receptor-induced depolarization of cerebral arteries. Am J Physiol Heart Circ Physiol 288(5):H2055–H2061

    Article  CAS  PubMed  Google Scholar 

  114. Liu DY, Yang DC, He HB, Chen XP, Cao TB, Feng XL, Ma LQ, Luo ZD, Wang LH, Yan ZC, Zhu ZM, Tepel M (2009) Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats. Hypertension 53(1):70–U115

    Article  CAS  PubMed  Google Scholar 

  115. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4(−)/(−) mice. Nat Cell Biol 3(2):121–127

    Article  CAS  PubMed  Google Scholar 

  116. Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca2+-permeable cation channel. Circ Res 88(3):325–332

    Article  CAS  PubMed  Google Scholar 

  117. Dietrich A, Schnitzler MMY, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6(−/−) mice. Mol Cell Biol 25(16):6980–6989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kumar B, Dreja K, Shah SS, Cheong A, Xu SZ, Sukumar P, Naylor J, Forte A, Cipollaro M, McHugh D, Kingston PA, Heagerty AM, Munsch CM, Bergdahl A, Hultgardh-Nilsson A, Gomez MF, Porter KE, Hellstrand P, Beech DJ (2006) Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res 98(4):557–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Takahashi Y, Watanabe H, Murakami M, Ohba T, Radovanovic M, Ono K, Iijima T, Ito H (2007) Involvement of transient receptor potential canonical 1 (TRPC1) in angiotensin II-induced vascular smooth muscle cell hypertrophy. Atherosclerosis 195(2):287–296

    Article  CAS  PubMed  Google Scholar 

  120. Freichel M, Philipp S, Cavalie A, Flockerzi V (2004) TRPC4 and TRPC4-deficient mice. Novartis Found Symp 258:189–199, discussion 199–203, 263–186

    Article  CAS  PubMed  Google Scholar 

  121. Yao X, Garland CJ (2005) Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res 97(9):853–863

    Article  CAS  PubMed  Google Scholar 

  122. Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281(19):13588–13595

    Article  CAS  PubMed  Google Scholar 

  123. Balzer M, Lintschinger B, Groschner K (1999) Evidence for a role of Trp proteins in the oxidative stress-induced membrane conductances of porcine aortic endothelial cells. Cardiovasc Res 42(2):543–549

    Article  CAS  PubMed  Google Scholar 

  124. Simard JM, Kent TA, Chen MK, Tarasov KV, Gerzanich V (2007) Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol 6(3):258–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ahmmed GU, Malik AB (2005) Functional role of TRPC channels in the regulation of endothelial permeability. Pflugers Arch 451(1):131–142

    Article  CAS  PubMed  Google Scholar 

  126. Singh I, Knezevic N, Ahmmed GU, Kini V, Malik AB, Mehta D (2007) G alpha(q)-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J Biol Chem 282(11):7833–7843

    Article  CAS  PubMed  Google Scholar 

  127. Jho D, Mehta D, Ahmmed G, Gao XP, Tiruppathi C, Broman M, Malik AB (2005) Angiopoietin-1 opposes VEGF-induced increase in endothelial permeability by inhibiting TRPC1-dependent Ca2 influx. Circ Res 96(12):1282–1290

    Article  CAS  PubMed  Google Scholar 

  128. Trebak M (2006) Canonica transient receptor potential channels in disease: targets for novel drug therapy? Drug Discov Today 11(19–20):924–930

    Article  CAS  PubMed  Google Scholar 

  129. Brown RC, Davis TP (2005) Hypoxia/aglycemia alters expression of occludin and actin in brain endothelial cells. Biochem Biophys Res Commun 327(4):1114–1123

    Article  CAS  PubMed  Google Scholar 

  130. Brown RC, Mark KS, Egleton RD, Davis TP (2004) Protection against hypoxia-induced blood–brain barrier disruption: changes in intracellular calcium. Am J Physiol Cell Physiol 286(5):C1045–C1052

    Article  CAS  PubMed  Google Scholar 

  131. Abbruscato TJ, Davis TP (1999) Combination of hypoxia/aglycemia compromises in vitro blood–brain barrier integrity. J Pharmacol Exp Ther 289(2):668–675

    CAS  PubMed  Google Scholar 

  132. Hicks K, O’Neil RG, Dubinsky WS, Brown RC (2010) TRPC-mediated actin-myosin contraction is critical for BBB disruption following hypoxic stress. Am J Physiol Cell Physiol 298(6):C1583–C1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lipski J, Park TI, Li D, Lee SC, Trevarton AJ, Chung KK, Freestone PS, Bai JZ (2006) Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res 1077(1):187–199

    Article  CAS  PubMed  Google Scholar 

  134. Li H, Huang J, Du W, Jia C, Yao H, Wang Y (2012) TRPC6 inhibited NMDA receptor activities and protected neurons from ischemic excitotoxicity. J Neurochem 123(6):1010–1018

    Article  CAS  PubMed  Google Scholar 

  135. Lin Y, Zhang JC, Fu J, Chen F, Wang J, Wu ZL, Yuan SY (2013) Hyperforin attenuates brain damage induced by transient middle cerebral artery occlusion (MCAO) in rats via inhibition of TRPC6 channels degradation. J Cereb Blood Flow Metab 33(2):253–262

    Article  CAS  PubMed  Google Scholar 

  136. Barreto GE, Gonzalez J, Torres Y, Morales L (2011) Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res 71(2):107–113

    Article  PubMed  Google Scholar 

  137. Munakata M, Shirakawa H, Nagayasu K, Miyanohara J, Miyake T, Nakagawa T, Katsuki H, Kaneko S (2013) Transient receptor potential canonical 3 inhibitor Pyr3 improves outcomes and attenuates astrogliosis after intracerebral hemorrhage in mice. Stroke 44(7):1981–1987

    Article  CAS  PubMed  Google Scholar 

  138. Wang M, Bianchi R, Chuang SC, Zhao WF, Wong RKS (2007) Group I metabotropic glutamate receptor-dependent TRPC channel trafficking in hippocampal neurons. J Neurochem 101(2):411–421

    Article  CAS  PubMed  Google Scholar 

  139. Phelan KD, Shwe UT, Abramowitz J, Birnbaumer L, Zheng F (2014) Critical role of canonical transient receptor potential channel 7 in initiation of seizures. Proc Natl Acad Sci U S A 111(31):11533–11538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. von Spiczak S, Muhle H, Helbig I, de Kovel CG, Hampe J, Gaus V, Koeleman BP, Lindhout D, Schreiber S, Sander T, Stephani U (2010) Association study of TRPC4 as a candidate gene for generalized epilepsy with photosensitivity. Neruomol Med 12(3):292–299

    Article  CAS  Google Scholar 

  141. Holscher C (1998) Possible causes of Alzheimer’s disease: amyloid fragments, free radicals, and calcium homeostasis. Neurobiol Dis 5(3):129–141

    Article  CAS  PubMed  Google Scholar 

  142. Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJ, van Gool WA, Hoozemans JJ (2006) The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm 113(11):1685–1695

    Article  CAS  PubMed  Google Scholar 

  143. Vetrivel KS, Zhang YW, Xu HX, Thinakaran G (2006) Pathological and physiological functions of presenilins. Mol Neurodegener 1:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Mattson MP, Chan SL (2003) Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 34(4–5):385–397

    Article  CAS  PubMed  Google Scholar 

  145. Kim JH, Choi S, Jung JE, Roh EJ, Kim HJ (2006) Capacitative Ca2+ entry is involved in regulating soluble amyloid precursor protein (sAPPalpha) release mediated by muscarinic acetylcholine receptor activation in neuroblastoma SH-SY5Y cells. J Neurochem 97(1):245–254

    Article  CAS  PubMed  Google Scholar 

  146. Yoo AS, Cheng I, Chung S, Grenfell TZ, Lee H, Pack-Chung E, Handler M, Shen J, Xia W, Tesco G, Saunders AJ, Ding K, Frosch MP, Tanzi RE, Kim TW (2000) Presenilin-mediated modulation of capacitative calcium entry. Neuron 27(3):561–572

    Article  CAS  PubMed  Google Scholar 

  147. Yamamoto S, Wajima T, Hara Y, Nishida M, Mori Y (2007) Transient receptor potential channels in Alzheimer’s disease. Biochim Biophys Acta 1772(8):958–967

    Article  CAS  PubMed  Google Scholar 

  148. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923

    Article  CAS  PubMed  Google Scholar 

  149. van Duijn CM, de Knijff P, Cruts M, Wehnert A, Havekes LM, Hofman A, Van Broeckhoven C (1994) Apolipoprotein E4 allele in a population-based study of early-onset Alzheimer’s disease. Nat Genet 7(1):74–78

    Article  PubMed  Google Scholar 

  150. Poduslo SE, Huang R, Huang J (2009) The frequency of the TRPC4AP haplotype in Alzheimer’s patients. Neurosci Lett 450(3):344–346

    Article  CAS  PubMed  Google Scholar 

  151. Mi K, Johnson GV (2006) The role of tau phosphorylation in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 3(5):449–463

    Article  CAS  PubMed  Google Scholar 

  152. Elliott E, Ginzburg I (2006) The role of neurotrophins and insulin on tau pathology in Alzheimer’s disease. Rev Neurosci 17(6):635–642

    Article  CAS  PubMed  Google Scholar 

  153. Querfurth HW, Selkoe DJ (1994) Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry 33(15):4550–4561

    Article  CAS  PubMed  Google Scholar 

  154. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375(6534):754–760

    Article  CAS  PubMed  Google Scholar 

  155. Levy-Lahad E, Wijsman EM, Nemens E, Anderson L, Goddard KA, Weber JL, Bird TD, Schellenberg GD (1995) A familial Alzheimer’s disease locus on chromosome 1. Science 269(5226):970–973

    Article  CAS  PubMed  Google Scholar 

  156. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T et al (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376(6543):775–778

    Article  CAS  PubMed  Google Scholar 

  157. Cook DG, Sung JC, Golde TE, Felsenstein KM, Wojczyk BS, Tanzi RE, Trojanowski JQ, Lee VM, Doms RW (1996) Expression and analysis of presenilin 1 in a human neuronal system: localization in cell bodies and dendrites. Proc Natl Acad Sci U S A 93(17):9223–9228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kovacs DM, Fausett HJ, Page KJ, Kim TW, Moir RD, Merriam DE, Hollister RD, Hallmark OG, Mancini R, Felsenstein KM, Hyman BT, Tanzi RE, Wasco W (1996) Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nat Med 2(2):224–229

    Article  CAS  PubMed  Google Scholar 

  159. Leissring MA, Paul BA, Parker I, Cotman CW, LaFerla FM (1999) Alzheimer’s presenilin-1 mutation potentiates inositol 1,4,5-trisphosphate-mediated calcium signaling in Xenopus oocytes. J Neurochem 72(3):1061–1068

    Article  CAS  PubMed  Google Scholar 

  160. Leissring MA, Parker I, LaFerla FM (1999) Presenilin-2 mutations modulate amplitude and kinetics of inositol 1, 4,5-trisphosphate-mediated calcium signals. J Biol Chem 274(46):32535–32538

    Article  CAS  PubMed  Google Scholar 

  161. Leissring MA, Akbari Y, Fanger CM, Cahalan MD, Mattson MP, LaFerla FM (2000) Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J Cell Biol 149(4):793–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Schneider I, Reverse D, Dewachter I, Ris L, Caluwaerts N, Kuiperi C, Gilis M, Geerts H, Kretzschmar H, Godaux E, Moechars D, Van Leuven F, Herms J (2001) Mutant presenilins disturb neuronal calcium homeostasis in the brain of transgenic mice, decreasing the threshold for excitotoxicity and facilitating long-term potentiation. J Biol Chem 276(15):11539–11544

    Article  CAS  PubMed  Google Scholar 

  163. Lessard CB, Lussier MP, Cayouette S, Bourque G, Boulay G (2005) The overexpression of presenilin2 and Alzheimer’s-disease-linked presenilin2 variants influences TRPC6-enhanced Ca2+ entry into HEK293 cells. Cell Signal 17(4):437–445

    Article  CAS  PubMed  Google Scholar 

  164. Griffith TN, Varela-Nallar L, Dinamarca MC, Inestrosa NC (2010) Neurobiological effects of hyperforin and its potential in Alzheimer’s disease therapy. Curr Med Chem 17(5):391–406

    Article  CAS  PubMed  Google Scholar 

  165. Mbebi C, See V, Mercken L, Pradier L, Muller U, Loeffler JP (2002) Amyloid precursor protein family-induced neuronal death is mediated by impairment of the neuroprotective calcium/calmodulin protein kinase IV-dependent signaling pathway. J Biol Chem 277(23):20979–20990

    Article  CAS  PubMed  Google Scholar 

  166. Sheng JG, Ito K, Skinner RD, Mrak RE, Rovnaghi CR, Van Eldik LJ, Griffin WS (1996) In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol Aging 17(5):761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Holliday J, Gruol DL (1993) Cytokine stimulation increases intracellular calcium and alters the response to quisqualate in cultured cortical astrocytes. Brain Res 621(2):233–241

    Article  CAS  PubMed  Google Scholar 

  168. John GR, Scemes E, Suadicani SO, Liu JSH, Charles PC, Lee SC, Spray DC, Brosnan CF (1999) IL-1 beta differentially regulates calcium wave propagation between primary human fetal astrocytes via pathways involving P2 receptors and gap junction channels. Proc Natl Acad Sci U S A 96(20):11613–11618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kugaya A, Kagaya A, Uchitomi Y, Motohashi N, Yamawaki S (1995) Inhibition of serotonin-induced Ca2+ mobilization by interleukin-1 beta in rat C6BU-1 glioma cells. Brain Res 682(1–2):151–156

    Article  CAS  PubMed  Google Scholar 

  170. Pita I, Jelaso AM, Ide CF (1999) IL-1beta increases intracellular calcium through an IL-1 type 1 receptor mediated mechanism in C6 astrocytic cells. Int J Dev Neurosci 17(8):813–820

    Article  CAS  PubMed  Google Scholar 

  171. Wu JM, Sun GY (1997) Effects of IL-1 beta on receptor-mediated poly-phosphoinositide signaling pathway in immortalized astrocytes (DITNC). Neurochem Res 22(10):1309–1315

    Article  CAS  PubMed  Google Scholar 

  172. John GR, Lee SC, Brosnan CF (2003) Cytokines: powerful regulators of glial cell activation. Neuroscientist 9(1):10–22

    Article  CAS  PubMed  Google Scholar 

  173. Lee SC, Dickson DW, Liu W, Brosnan CF (1993) Induction of nitric oxide synthase activity in human astrocytes by interleukin-1 beta and interferon-gamma. J Neuroimmunol 46(1–2):19–24

    Article  CAS  PubMed  Google Scholar 

  174. Beskina O, Miller A, Mazzocco-Spezzia A, Pulina MV, Golovina VA (2007) Mechanisms of interleukin-1 beta-induced Ca2+ signals in mouse cortical astrocytes: roles of store- and receptor-operated Ca2+ entry. Am J Physiol Cell Physiol 293(3):C1103–C1111

    Article  CAS  PubMed  Google Scholar 

  175. Selvaraj S, Watt JA, Singh BB (2009) TRPC1 inhibits apoptotic cell degeneration induced by dopaminergic neurotoxin MPTP/MPP+. Cell Calcium 46(3):209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bachis A, Major EO, Mocchetti I (2003) Brain-derived neurotrophic factor inhibits human immunodeficiency virus-1/gp120-mediated cerebellar granule cell death by preventing gp120 internalization. J Neurosci 23(13):5715–5722

    CAS  PubMed  Google Scholar 

  177. Zauli G, Secchiero P, Rodella L, Gibellini D, Mirandola P, Mazzoni M, Milani D, Dowd DR, Capitani S, Vitale M (2000) HIV-1 Tat-mediated inhibition of the tyrosine hydroxylase gene expression in dopaminergic neuronal cells. J Biol Chem 275(6):4159–4165

    Article  CAS  PubMed  Google Scholar 

  178. Yao HH, Peng FW, Dhillon N, Callen S, Bokhari S, Stehno-Bittel L, Ahmad SO, Wang JQ, Buch S (2009) Involvement of TRPC channels in CCL2-mediated neuroprotection against Tat toxicity. J Neurosci 29(6):1657–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Perez Jurado LA, Wang YK, Peoples R, Coloma A, Cruces J, Francke U (1998) A duplicated gene in the breakpoint regions of the 7q11.23 Williams-Beuren syndrome deletion encodes the initiator binding protein TFII-I and BAP-135, a phosphorylation target of BTK. Hum Mol Genet 7(3):325–334

    Article  CAS  PubMed  Google Scholar 

  180. Caraveo G, van Rossum DB, Patterson RL, Snyder SH, Desiderio S (2006) Action of TFII-I outside the nucleus as an inhibitor of agonist-induced calcium entry. Science 314(5796):122–125

    Article  CAS  PubMed  Google Scholar 

  181. van Rossum DB, Patterson RL, Sharma S, Barrow RK, Kornberg M, Gill DL, Snyder SH (2005) Phospholipase C gamma 1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434(7029):99–104

    Article  PubMed  CAS  Google Scholar 

  182. Hough C, Lu SJ, Davis CL, Chuang DM, Post RM (1999) Elevated basal and thapsigargin-stimulated intracellular calcium of platelets and lymphocytes from bipolar affective disorder patients measured by a fluorometric microassay. Biol Psychiatry 46(2):247–255

    Article  CAS  PubMed  Google Scholar 

  183. Wasserman MJ, Corson TW, Sibony D, Cooke RG, Parikh SV, Pennefather PS, Li PP, Warsh JJ (2004) Chronic lithium treatment attenuates intracellular calcium mobilization. Neuropsychopharmacology 29(4):759–769

    Article  CAS  PubMed  Google Scholar 

  184. Andreopoulos S, Wasserman M, Woo K, Li PP, Warsh JJ (2004) Chronic lithium treatment of B lymphoblasts from bipolar disorder patients reduces transient receptor potential channel 3 levels. Pharmacogenomics J 4(6):365–373

    Article  CAS  PubMed  Google Scholar 

  185. Caccia S, Gobbi M (2009) St. John’s wort components and the brain: uptake, concentrations reached and the mechanisms underlying pharmacological effects. Curr Drug Metab 10(9):1055–1065

    Article  CAS  PubMed  Google Scholar 

  186. Muller WE (2003) Current St John’s wort research from mode of action to clinical efficacy. Pharmacol Res 47(2):101–109

    Article  CAS  PubMed  Google Scholar 

  187. Treiber K, Singer A, Henke B, Muller WE (2005) Hyperforin activates nonselective cation channels (NSCCs). Br J Pharmacol 145(1):75–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Estacion M, Sinkins WG, Jones SW, Applegate MAB, Schilling WP (2006) Human TRPC6 expressed in HEK 293 cells forms non-selective cation channels with limited Ca2+ permeability. J Physiol 572(2):359–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fafa Tian or Bo Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, C., Tian, F. & Xiao, B. TRPC Channels: Prominent Candidates of Underlying Mechanism in Neuropsychiatric Diseases. Mol Neurobiol 53, 631–647 (2016). https://doi.org/10.1007/s12035-014-9004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9004-2

Keywords

Navigation