Skip to main content
Log in

Cocaine Withdrawal Impairs mGluR5-Dependent Long-Term Depression in Nucleus Accumbens Shell Neurons of Both Direct and Indirect Pathways

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We previously reported that animals withdrawn from repeated cocaine exposure exhibited a selective deficit in the ability to elicit metabotropic glutamate receptor 5 (mGluR5)-dependent long-term depression (LTD) in the nucleus accumbens (NAc) shell. To determine whether such impairment occurs in the NAc in a cell-type-specific manner, we used bacterial artificial chromosome (BAC) transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of gene regulatory elements for the dopamine D1 receptor (Drd1) or dopamine D2 receptor (Drd2) to identify distinct subpopulations of medium spiny neurons (MSNs). We found that bath application of group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) reliably induced LTD in both NAc shell and core MSNs of wild-type, hemizygous Drd1-eGFP, and Drd2-eGFP mice. Confirming our previous results, cocaine withdrawal selectively impaired DHPG-LTD in NAc shell Drd1-expressing direct and Drd2-expressing indirect pathway MSNs. We also found that the expression of DHPG-LTD in NAc MSNs was not affected by the Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist 1-naphthyl acetyl spermine. Furthermore, systemic administration of mGluR5-negative allosteric modulator fenobam before the daily injection of cocaine preserved mGluR5 function and significantly reduced the expression of cocaine-induced behavioral sensitization. These results reveal that withdrawal from repeated cocaine exposure may result in the impairment of NAc mGluR5-LTD in a subregion- but not cell-type-specific manner and suggests that pharmacological antagonism of mGluR5 may represent a potential strategy for reducing cocaine-induced addictive behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598

    Article  CAS  PubMed  Google Scholar 

  2. Thomas MJ, Kalivas PW, Shaham Y (2008) Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br J Pharmacol 154:327–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sesack SR, Grace AA (2010) Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47

    Article  PubMed  Google Scholar 

  4. Schramm NL, Egli RE, Winder DG (2002) LTP in the mouse nucleus accumbens is developmentally regulated. Synapse 45:213–219

    Article  CAS  PubMed  Google Scholar 

  5. Hoffman AF, Oz M, Caulder T, Lupica CR (2003) Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J Neurosci 23:4815–4820

    CAS  PubMed  Google Scholar 

  6. Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235

    Article  CAS  PubMed  Google Scholar 

  7. Schotanus SM, Chergui K (2008) Long-term potentiation in the nucleus accumbens requires both NR2A- and NR2B-containing N-methyl-D-aspartate receptors. Eur J Neurosci 27:1957–1964

    Article  PubMed  Google Scholar 

  8. Lüscher C, Huber KM (2010) Group I mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 65:445–459

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang CC, Yeh CM, Wu MY, Hsu KS (2013) A single in vivo cocaine administration impairs 5-HT1B receptor-induced long-term depression in the nucleus accumbens. J Neurochem 125:809–821

    Article  CAS  PubMed  Google Scholar 

  10. Fourgeaud L, Mato S, Bouchet D, Hémar A, Worley PF, Manzoni OJ (2004) A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J Neurosci 24:6939–6945

    Article  CAS  PubMed  Google Scholar 

  11. Kasanetz F, Deroche-Gamonet V, Berson N, Balado E, Lafourcade M, Manzoni O, Piazza PV (2010) Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science 328:1709–1712

    Article  CAS  PubMed  Google Scholar 

  12. Moussawi K, Pacchioni A, Moran M, Olive MF, Gass JT, Lavin A, Kalivas PW (2009) N-Acetylcysteine reverses cocaine-induced metaplasticity. Nat Neurosci 12:182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng LJ, Shaham Y, Marinelli M, Wolf ME (2008) Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454:118–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lüscher C, Malenka RC (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69:650–663

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kreitzer AC, Malenka RC (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60:543–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee KW, Kim Y, Kim AM, Helmin K, Nairn AC, Greengard P (2006) Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc Natl Acad Sci U S A 103:3399–3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kreitzer AC, Malenka RC (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 445:643–647

    Article  CAS  PubMed  Google Scholar 

  18. Day M, Wokosin D, Plotkin JL, Tian X, Surmeier DJ (2008) Differential excitability and modulation of striatal medium spiny neuron dendrites. J Neurosci 28:11603–11614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gertler TS, Chan CS, Surmeier DJ (2008) Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci 28:10814–10824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321:848–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang CC, Yeh CM, Wu MY, Chang AY, Chan JY, Chan SH, Hsu KS (2011) Cocaine withdrawal impairs metabotropic glutamate receptor-dependent long-term depression in the nucleus accumbens. J Neurosci 31:4194–4203

    Article  CAS  PubMed  Google Scholar 

  22. Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925

    Article  CAS  PubMed  Google Scholar 

  23. Martin M, Chen BT, Hopf FW, Bowers MS, Bonci A (2006) Cocaine self-administration selectively abolishes LTD in the core of the nucleus accumbens. Nat Neurosci 9:868–869

    Article  CAS  PubMed  Google Scholar 

  24. Thomas MJ, Beurrier C, Bonci A, Malenka RC (2001) Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat Neurosci 4:1217–1223

    Article  CAS  PubMed  Google Scholar 

  25. Kufahl PR, Nemirovsky NE, Watterson LR, Zautra N, Olive MF (2013) Positive or negative allosteric modulation of metabotropic glutamate receptor 5 (mGluR5) does not alter expression of behavioral sensitization to methamphetamine. F1000Res 2:84

  26. Loweth JA, Scheyer AF, Milovanovic M, Lacrosse AL, Flores-Barrera E, Werner CT, Li X, Ford KA, Le T, Olive MF, Szumlinski KK, Tseng KY, Wolf ME (2013) Synaptic depression via mGluR1 positive allosteric modulation suppresses cue-induced cocaine craving. Nat Neurosci 17:73–80

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ade KK, Wan Y, Chen M, Gloss B, Calakos N (2011) An improved BAC transgenic fluorescent reporter line for sensitive and specific identification of striatonigral medium spiny neurons. Front Syst Neurosci 5:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bagetta V, Picconi B, Marinucci S, Sgobio C, Pendolino V, Ghiglieri V, Fusco FR, Giampà C, Calabresi P (2011) Dopamine-dependent long-term depression is expressed in striatal spiny neurons of both direct and indirect pathways: implications for Parkinson’s disease. J Neurosci 31:12513–12522

    Article  CAS  PubMed  Google Scholar 

  29. Kramer PF, Christensen CH, Hazelwood LA, Dobi A, Bock R, Sibley DR, Mateo Y, Alvarez VA (2011) Dopamine D2 receptor overexpression alters behavior and physiology in Drd2-EGFP mice. J Neurosci 31:126–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mameli M, Halbout B, Creton C, Engblom D, Parkitna JR, Spanagel R, Lüscher C (2009) Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat Neurosci 12:1036–1041

    Article  CAS  PubMed  Google Scholar 

  31. McCutcheon JE, Wang X, Tseng KY, Wolf ME, Marinelli M (2011) Calcium-permeable AMPA receptors are present in nucleus accumbens synapses after prolonged withdrawal from cocaine self-administration but not experimenter-administered cocaine. J Neurosci 31:5737–5743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koike M, Iino M, Ozawa S (1997) Blocking effect of 1-naphthyl acetyl spermine on Ca2+-permeable AMPA receptors in cultured rat hippocampal neurons. Neurosci Res 29:27–36

    Article  CAS  PubMed  Google Scholar 

  33. Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30:215–238

    Article  CAS  PubMed  Google Scholar 

  34. Flores-Barrera E, Vizcarra-Chacón BJ, Bargas J, Tapia D, Galarraga E (2011) Dopaminergic modulation of corticostriatal responses in medium spiny projection neurons from direct and indirect pathways. Front Syst Neurosci 5:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nelson AB, Hang GB, Grueter BA, Pascoli V, Luscher C, Malenka RC, Kreitzer AC (2012) A comparison of striatal-dependent behaviors in wild-type and hemizygous Drd1a and Drd2 BAC transgenic mice. J Neurosci 32:9119–9123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Knackstedt LA, Moussawi K, Lalumiere R, Schwendt M, Klugmann M, Kalivas PW (2010) Extinction training after cocaine self-administration induces glutamatergic plasticity to inhibit cocaine seeking. J Neurosci 30:7984–7992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McCutcheon JE, Loweth JA, Ford KA, Marinelli M, Wolf ME, Tseng KY (2011) Group I mGluR activation reverses cocaine-induced accumulation of calcium-permeable AMPA receptors in nucleus accumbens synapses via a protein kinase C-dependent mechanism. J Neurosci 31:14536–14541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pascoli V, Turiault M, Lüscher C (2011) Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behavior. Nature 481:71–75

    Article  PubMed  Google Scholar 

  39. Pascoli V, Terrier J, Espallergues J, Valjent E, O’Connor EC, Lüscher C (2014) Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 509:459–464

    Article  CAS  PubMed  Google Scholar 

  40. Bäckström P, Hyytiä P (2007) Involvement of AMPA/kainate, NMDA, and mGlu5 receptors in the nucleus accumbens core in cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology 192:571–580

    Article  PubMed  Google Scholar 

  41. Keck TM, Yang HJ, Bi GH, Huang Y, Zhang HY, Srivastava R, Gardner EL, Newman AH, Xi ZX (2013) Fenobam sulfate inhibits cocaine-taking and cocaine-seeking behavior in rats: implications for addiction treatment in humans. Psychopharmacology 229:253–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fishell G, Heintz N (2013) The neuron identity problem: form meets function. Neuron 80:602–612

    Article  CAS  PubMed  Google Scholar 

  43. Bellone C, Mameli M (2012) mGluR-dependent synaptic plasticity in drug-seeking. Front Pharmacol 3:159

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the Ministry of Science and Technology (NSC-102-2321-B-006-018; principal investigator, C.C.H. and NSC100-2321-B-006-001-MY4; principal investigator, K.S.H.) and the Ministry of Education (Aim for the Top University Project to the NCKU), Taiwan.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuei-Sen Hsu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CC., Liang, YC., Lee, CC. et al. Cocaine Withdrawal Impairs mGluR5-Dependent Long-Term Depression in Nucleus Accumbens Shell Neurons of Both Direct and Indirect Pathways. Mol Neurobiol 52, 1223–1233 (2015). https://doi.org/10.1007/s12035-014-8926-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8926-z

Keywords

Navigation