Skip to main content

Advertisement

Log in

Stress Conditions Increase Vimentin Cleavage by Omi/HtrA2 Protease in Human Primary Neurons and Differentiated Neuroblastoma Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dysfunctional Omi/HtrA2, a mitochondrial serine protease, has been implicated in various neurodegenerative disorders. Despite the wealth of evidence on the roles of Omi/HtrA2 in apoptosis, little is known about its cytosolic targets, the cleavage of which could account for the observed morphological changes such as cytoskeletal reorganizations in axons. By proteomic analysis, vimentin was identified as a substrate for Omi/HtrA2 and we have reported increased Omi/HtrA2 protease activity in Alzheimer disease (AD) brain. Here, we investigated a possible link between Omi/HtrA2 and vimentin cleavage, and consequence of this cleavage on mitochondrial distribution in neurons. In vitro protease assays showed vimentin to be cleaved by Omi/HtrA2 protease, and proximity ligation assay demonstrated an increased interaction between Omi/HtrA2 and vimentin in human primary neurons upon stress stimuli. Using differentiated neuroblastoma SH-SY5Y cells, we showed that Omi/HtrA2 under several different stress conditions induces cleavage of vimentin in wild-type as well as SH-SY5Y cells transfected with amyloid precursor protein with the Alzheimer disease-associated Swedish mutation. After stress treatment, inhibition of Omi/HtrA2 protease activity by the Omi/HtrA2 specific inhibitor, Ucf-101, reduced the cleavage of vimentin in wild-type cells. Following altered vimentin filaments integrity by stress stimuli, mitochondria was redistributed in differentiated SH-SY5Y cells and human primary neurons. In summary, the findings outlined in this paper suggest a role of Omi/HtrA2 in modulation of vimentin filamentous structure in neurons. Our results provide important findings for understanding the biological role of Omi/HtrA2 activity during stress conditions, and give knowledge of interplay between Omi/HtrA2 and vimentin which might affect mitochondrial distribution in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vande Walle L, Van Damme P, Lamkanfi M, Saelens X, Vandekerckhove J, Gevaert K, Vandenabeele P (2007) Proteome-wide identification of HtrA2/Omi substrates. J Proteome Res 6(3):1006–1015. doi:10.1021/pr060510d

    Article  CAS  PubMed  Google Scholar 

  2. Vaux DL, Silke J (2003) HtrA2/Omi, a sheep in wolf’s clothing. Cell 115(3):251–253

    Article  CAS  PubMed  Google Scholar 

  3. Vande Walle L, Lamkanfi M, Vandenabeele P (2008) The mitochondrial serine protease HtrA2/Omi: an overview. Cell Death Differ 15(3):453–460. doi:10.1038/sj.cdd.4402291

    Article  CAS  PubMed  Google Scholar 

  4. van Loo G, van Gurp M, Depuydt B, Srinivasula SM, Rodriguez I, Alnemri ES, Gevaert K, Vandekerckhove J, Declercq W, Vandenabeele P (2002) The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 9(1):20–26. doi:10.1038/sj.cdd.4400970

    Article  PubMed  Google Scholar 

  5. Suzuki Y, Takahashi-Niki K, Akagi T, Hashikawa T, Takahashi R (2004) Mitochondrial protease Omi/HtrA2 enhances caspase activation through multiple pathways. Cell Death Differ 11(2):208–216. doi:10.1038/sj.cdd.4401343

    Article  CAS  PubMed  Google Scholar 

  6. Bhuiyan MS, Fukunaga K (2009) Mitochondrial serine protease HtrA2/Omi as a potential therapeutic target. Curr Drug Targets 10(4):372–383

    Article  CAS  PubMed  Google Scholar 

  7. Gupta S, Singh R, Datta P, Zhang Z, Orr C, Lu Z, Dubois G, Zervos AS, Meisler MH, Srinivasula SM, Fernandes-Alnemri T, Alnemri ES (2004) The C-terminal tail of presenilin regulates Omi/HtrA2 protease activity. J Biol Chem 279(44):45844–45854. doi:10.1074/jbc.M404940200

    Article  CAS  PubMed  Google Scholar 

  8. Martins LM, Morrison A, Klupsch K, Fedele V, Moisoi N, Teismann P, Abuin A, Grau E, Geppert M, Livi GP, Creasy CL, Martin A, Hargreaves I, Heales SJ, Okada H, Brandner S, Schulz JB, Mak T, Downward J (2004) Neuroprotective role of the reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol 24(22):9848–9862. doi:10.1128/MCB.24.22.9848-9862.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Park HJ, Seong YM, Choi JY, Kang S, Rhim H (2004) Alzheimer’s disease-associated amyloid beta interacts with the human serine protease HtrA2/Omi. Neurosci Lett 357(1):63–67. doi:10.1016/j.neulet.2003.11.068

    Article  CAS  PubMed  Google Scholar 

  10. Kooistra J, Milojevic J, Melacini G, Ortega J (2009) A new function of human HtrA2 as an amyloid-beta oligomerization inhibitor. J Alzheimers Dis 17(2):281–294. doi:10.3233/JAD-2009-1037

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Park HJ, Kim SS, Seong YM, Kim KH, Goo HG, Yoon EJ, do Min S, Kang S, Rhim H (2006) Beta-amyloid precursor protein is a direct cleavage target of HtrA2 serine protease. Implications for the physiological function of HtrA2 in the mitochondria. J Biol Chem 281(45):34277–34287. doi:10.1074/jbc.M603443200

    Article  CAS  PubMed  Google Scholar 

  12. Behbahani H, Pavlov PF, Wiehager B, Nishimura T, Winblad B, Ankarcrona M (2010) Association of Omi/HtrA2 with gamma-secretase in mitochondria. Neurochem Int 57(6):668–675. doi:10.1016/j.neuint.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  13. Plun-Favreau H, Klupsch K, Moisoi N, Gandhi S, Kjaer S, Frith D, Harvey K, Deas E, Harvey RJ, McDonald N, Wood NW, Martins LM, Downward J (2007) The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat Cell Biol 9(11):1243–1252. doi:10.1038/ncb1644

    Article  CAS  PubMed  Google Scholar 

  14. Strauss KM, Martins LM, Plun-Favreau H, Marx FP, Kautzmann S, Berg D, Gasser T, Wszolek Z, Muller T, Bornemann A, Wolburg H, Downward J, Riess O, Schulz JB, Kruger R (2005) Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet 14(15):2099–2111. doi:10.1093/hmg/ddi215

    Article  CAS  PubMed  Google Scholar 

  15. Gray CW, Ward RV, Karran E, Turconi S, Rowles A, Viglienghi D, Southan C, Barton A, Fantom KG, West A, Savopoulos J, Hassan NJ, Clinkenbeard H, Hanning C, Amegadzie B, Davis JB, Dingwall C, Livi GP, Creasy CL (2000) Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur J Biochem 267(18):5699–5710

    Article  CAS  PubMed  Google Scholar 

  16. Han C, Nam MK, Park HJ, Seong YM, Kang S, Rhim H (2008) J Microbiol Biotechnol 18(6):1197–1202

    CAS  PubMed  Google Scholar 

  17. Faccio L, Fusco C, Chen A, Martinotti S, Bonventre JV, Zervos AS (2000) Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia. J Biol Chem 275(4):2581–2588

    Article  CAS  PubMed  Google Scholar 

  18. Moisoi N, Klupsch K, Fedele V, East P, Sharma S, Renton A, Plun-Favreau H, Edwards RE, Teismann P, Esposti MD, Morrison AD, Wood NW, Downward J, Martins LM (2009) Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response. Cell Death Differ 16(3):449–464. doi:10.1038/cdd.2008.166

    Article  CAS  PubMed  Google Scholar 

  19. Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333(6046):1109–1112. doi:10.1126/science.1201940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150(6):1283–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wagner OI, Lifshitz J, Janmey PA, Linden M, McIntosh TK, Leterrier JF (2003) Mechanisms of mitochondria-neurofilament interactions. J Neurosci 23(27):9046–9058

    CAS  PubMed  Google Scholar 

  22. Summerhayes IC, Wong D, Chen LB (1983) Effect of microtubules and intermediate filaments on mitochondrial distribution. J Cell Sci 61:87–105

    CAS  PubMed  Google Scholar 

  23. Favre B, Schneider Y, Lingasamy P, Bouameur JE, Begre N, Gontier Y, Steiner-Champliaud MF, Frias MA, Borradori L, Fontao L (2011) Plectin interacts with the rod domain of type III intermediate filament proteins desmin and vimentin. Eur J Cell Biol 90(5):390–400. doi:10.1016/j.ejcb.2010.11.013

    Article  CAS  PubMed  Google Scholar 

  24. Rezniczek GA, Abrahamsberg C, Fuchs P, Spazierer D, Wiche G (2003) Plectin 5′-transcript diversity: short alternative sequences determine stability of gene products, initiation of translation and subcellular localization of isoforms. Hum Mol Genet 12(23):3181–3194. doi:10.1093/hmg/ddg345

    Article  CAS  PubMed  Google Scholar 

  25. Tang HL, Lung HL, Wu KC, Le AH, Tang HM, Fung MC (2008) Vimentin supports mitochondrial morphology and organization. Biochem J 410(1):141–146. doi:10.1042/BJ20071072

    Article  CAS  PubMed  Google Scholar 

  26. Negrette-Guzman M, Huerta-Yepez S, Tapia E, Pedraza-Chaverri J (2013) Modulation of mitochondrial functions by the indirect antioxidant sulforaphane: a seemingly contradictory dual role and an integrative hypothesis. Free Radic Biol Med 65:1078–1089. doi:10.1016/j.freeradbiomed.2013.08.182

    Article  CAS  PubMed  Google Scholar 

  27. Choi S, Singh SV (2005) Bax and Bak are required for apoptosis induction by sulforaphane, a cruciferous vegetable-derived cancer chemopreventive agent. Cancer Res 65(5):2035–2043. doi:10.1158/0008-5472.CAN-04-3616

    Article  CAS  PubMed  Google Scholar 

  28. Rudolf E, Cervinka M (2011) Sulforaphane induces cytotoxicity and lysosome- and mitochondria-dependent cell death in colon cancer cells with deleted p53. Toxicol In Vitro 25(7):1302–1309. doi:10.1016/j.tiv.2011.04.019

    Article  CAS  PubMed  Google Scholar 

  29. Kosuge Y, Koen Y, Ishige K, Minami K, Urasawa H, Saito H, Ito Y (2003) S-allyl-L-cysteine selectively protects cultured rat hippocampal neurons from amyloid beta-protein- and tunicamycin-induced neuronal death. Neuroscience 122(4):885–895

    Article  CAS  PubMed  Google Scholar 

  30. Bourke CA, Carrigan MJ (1993) Experimental tunicamycin toxicity in cattle, sheep and pigs. Aust Vet J 70(5):188–189

    Article  CAS  PubMed  Google Scholar 

  31. Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45(5):583–595. doi:10.1016/j.neuint.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  32. Mishra A, Kim HJ, Shin AH, Thayer SA (2012) Synapse loss induced by interleukin-1beta requires pre- and post-synaptic mechanisms. J Neuroimmune Pharmacol 7(3):571–578. doi:10.1007/s11481-012-9342-7

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cilenti L, Lee Y, Hess S, Srinivasula S, Park KM, Junqueira D, Davis H, Bonventre JV, Alnemri ES, Zervos AS (2003) Characterization of a novel and specific inhibitor for the pro-apoptotic protease Omi/HtrA2. J Biol Chem 278(13):11489–11494. doi:10.1074/jbc.M212819200

    Article  CAS  PubMed  Google Scholar 

  34. Klupsch K, Downward J (2006) The protease inhibitor Ucf-101 induces cellular responses independently of its known target, HtrA2/Omi. Cell Death Differ 13(12):2157–2159. doi:10.1038/sj.cdd.4401955

    Article  CAS  PubMed  Google Scholar 

  35. Clausen T, Southan C, Ehrmann M (2002) The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell 10(3):443–455

    Article  CAS  PubMed  Google Scholar 

  36. Shin J, Yu SB, Yu UY, Jo SA, Ahn JH (2010) Swedish mutation within amyloid precursor protein modulates global gene expression towards the pathogenesis of Alzheimer’s disease. BMB Rep 43(10):704–709. doi:10.5483/BMBRep.2010.43.10.704

    Article  CAS  PubMed  Google Scholar 

  37. Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, Day CL, Tikoo A, Burke R, Wrobel C, Moritz RL, Simpson RJ, Vaux DL (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277(1):445–454. doi:10.1074/jbc.M109891200

    Article  CAS  PubMed  Google Scholar 

  38. Blink E, Maianski NA, Alnemri ES, Zervos AS, Roos D, Kuijpers TW (2004) Intramitochondrial serine protease activity of Omi/HtrA2 is required for caspase-independent cell death of human neutrophils. Cell Death Differ 11(8):937–939. doi:10.1038/sj.cdd.4401409

    Article  CAS  PubMed  Google Scholar 

  39. Liu MJ, Liu ML, Shen YF, Kim JM, Lee BH, Lee YS, Hong ST (2007) Transgenic mice with neuron-specific overexpression of HtrA2/Omi suggest a neuroprotective role for HtrA2/Omi. Biochem Biophys Res Commun 362(2):295–300. doi:10.1016/j.bbrc.2007.07.118

    Article  CAS  PubMed  Google Scholar 

  40. Yang L, Sun M, Sun XM, Cheng GZ, Nicosia SV, Cheng JQ (2007) Akt attenuation of the serine protease activity of HtrA2/Omi through phosphorylation of serine 212. J Biol Chem 282(15):10981–10987. doi:10.1074/jbc.M700445200

    Article  CAS  PubMed  Google Scholar 

  41. Wiche G, Baker MA (1982) Cytoplasmic network arrays demonstrated by immunolocalization using antibodies to a high molecular weight protein present in cytoskeletal preparations from cultured cells. Exp Cell Res 138(1):15–29

    Article  CAS  PubMed  Google Scholar 

  42. Foisner R, Leichtfried FE, Herrmann H, Small JV, Lawson D, Wiche G (1988) Cytoskeleton-associated plectin: in situ localization, in vitro reconstitution, and binding to immobilized intermediate filament proteins. J Cell Biol 106(3):723–733

    Article  CAS  PubMed  Google Scholar 

  43. Byun Y, Chen F, Chang R, Trivedi M, Green KJ, Cryns VL (2001) Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. Cell Death Differ 8(5):443–450. doi:10.1038/sj.cdd.4400840

    Article  CAS  PubMed  Google Scholar 

  44. Fischer U, Janicke RU, Schulze-Osthoff K (2003) Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 10(1):76–100. doi:10.1038/sj.cdd.4401160

    Article  CAS  PubMed  Google Scholar 

  45. Zheng L, Terman A, Hallbeck M, Dehvari N, Cowburn RF, Benedikz E, Kagedal K, Cedazo-Minguez A, Marcusson J (2011) Macroautophagy-generated increase of lysosomal amyloid beta-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells. Autophagy 7(12):1528–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Song C, Zhang Y, Dong Y (2013) Acute and subacute IL-1beta administrations differentially modulate neuroimmune and neurotrophic systems: possible implications for neuroprotection and neurodegeneration. J Neuroinflammation 10:59. doi:10.1186/1742-2094-10-59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Srinivasan D, Yen JH, Joseph DJ, Friedman W (2004) Cell type-specific interleukin-1beta signaling in the CNS. J Neurosci 24(29):6482–6488. doi:10.1523/JNEUROSCI.5712-03.2004

    Article  CAS  PubMed  Google Scholar 

  48. Alnemri ES (2007) HtrA2 and Parkinson’s disease: think PINK? Nat Cell Biol 9(11):1227–1229. doi:10.1038/ncb1107-1227

    Article  CAS  PubMed  Google Scholar 

  49. Bordt EA, Polster BM (2014) NADPH oxidase- and mitochondria-derived reactive oxygen species in proinflammatory microglial activation: a bipartisan affair? Free Radic Biol Med 76C:34–46. doi:10.1016/j.freeradbiomed.2014.07.033

    Article  Google Scholar 

  50. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, Binaglia M, Corsini E, Di Luca M, Galli CL, Marinovich M (2003) Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 23(25):8692–8700

    CAS  PubMed  Google Scholar 

  51. Huet G, Gouyer V, Delacour D, Richet C, Zanetta JP, Delannoy P, Degand P (2003) Involvement of glycosylation in the intracellular trafficking of glycoproteins in polarized epithelial cells. Biochimie 85(3–4):323–330

    Article  CAS  PubMed  Google Scholar 

  52. Kong AN, Yu R, Chen C, Mandlekar S, Primiano T (2000) Signal transduction events elicited by natural products: role of MAPK and caspase pathways in homeostatic response and induction of apoptosis. Arch Pharm Res 23(1):1–16

    Article  CAS  PubMed  Google Scholar 

  53. Baloh RH (2008) Mitochondrial dynamics and peripheral neuropathy. Neuroscientist 14(1):12–18. doi:10.1177/1073858407307354

    Article  CAS  PubMed  Google Scholar 

  54. Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS (2010) Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci U S A 107(43):18670–18675. doi:10.1073/pnas.1006586107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vos M, Lauwers E, Verstreken P (2010) Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Front Synaptic Neurosci 2:139. doi:10.3389/fnsyn.2010.00139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Linden M, Nelson BD, Leterrier JF (1989) The specific binding of the microtubule-associated protein 2 (MAP2) to the outer membrane of rat brain mitochondria. Biochem J 261(1):167–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leterrier JF, Rusakov DA, Nelson BD, Linden M (1994) Interactions between brain mitochondria and cytoskeleton: evidence for specialized outer membrane domains involved in the association of cytoskeleton-associated proteins to mitochondria in situ and in vitro. Microsc Res Tech 27(3):233–261. doi:10.1002/jemt.1070270305

    Article  CAS  PubMed  Google Scholar 

  58. Nekrasova OE, Mendez MG, Chernoivanenko IS, Tyurin-Kuzmin PA, Kuczmarski ER, Gelfand VI, Goldman RD, Minin AA (2011) Vimentin intermediate filaments modulate the motility of mitochondria. Mol Biol Cell 22(13):2282–2289. doi:10.1091/mbc.E10-09-0766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tolstonog GV, Shoeman RL, Traub U, Traub P (2001) Role of the intermediate filament protein vimentin in delaying senescence and in the spontaneous immortalization of mouse embryo fibroblasts. DNA Cell Biol 20(9):509–529. doi:10.1089/104454901317094945

    Article  CAS  PubMed  Google Scholar 

  60. Kieper N, Holmstrom KM, Ciceri D, Fiesel FC, Wolburg H, Ziviani E, Whitworth AJ, Martins LM, Kahle PJ, Kruger R (2010) Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1. Exp Cell Res 316(7):1213–1224. doi:10.1016/j.yexcr.2010.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was funded by grants from Gun och Bertil Stohnes foundation, Alzheimer foundation, Gamla Tjänarinnor Stiftelse, Karolinska Institutet foundation, and Olle Engkvist Byggmästare Stiftelse. The authors would like to thank Dr. Anna Sandebring and Dr. Paula Merino for excellent methodological advises, and Dr. Taher Darreh-Shori and Dr. Pavel Pavlov for critical reading of this manuscript.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homira Behbahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucotte, B., Tajhizi, M., Alkhatib, D. et al. Stress Conditions Increase Vimentin Cleavage by Omi/HtrA2 Protease in Human Primary Neurons and Differentiated Neuroblastoma Cells. Mol Neurobiol 52, 1077–1092 (2015). https://doi.org/10.1007/s12035-014-8906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8906-3

Keywords

Navigation