Skip to main content

Advertisement

Log in

PRDX6 Exacerbates Dopaminergic Neurodegeneration in a MPTP Mouse Model of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Peroxiredoxin 6 (PRDX6) is a bifunctional protein with both glutathione peroxidase (GPx) and calcium-independent phospholipase A2 (iPLA2) activities. Expression of PRDX6 has been detected in human Parkinson’s disease (PD) and dementia patients. However, no study has described PRDX6 function in the dopaminergic neurodegeneration in PD. Herein, we investigated the effects of PRDX6 on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration using PRDX6 transgenic (Tg) mice. Immunohistochemistry (IHC) and Western blot data for tyrosine hydroxylase (TH) showed that PRDX6 Tg mice had much higher loss of dopaminergic neurons by MPTP administration compared to non-Tg mice, as well as there was much higher behavioral impairment and astrocyte activation in PRDX6 Tg mice. MPTP-induced GPx activity was not different between PRDX6 Tg mice and non-Tg mice, which is accompanied by hyperoxidation of PRDX6. While iPLA2 activity was increased in PRDX6 Tg mice followed by an increase in the level of ROS and 4-hydroxynonenal (4-HNE). Intriguingly, the expression pattern of PRDX6 showed similar distribution and co-localization with astrocytes, but not neuron in the mouse and human brain. Furthermore, we demonstrated that iPLA2 activity of PRDX6 induced astrocytic activation followed by increased proinflammatory cytokines (TNF-α and IL1-β), 4-HNE, and PRDX6 hyperoxidation in primary cultured astrocytes. Our findings provide novel insights for PRDX6 function on nigrostriatal dopaminergic neuronal system, and we suggest that PRDX6 has an important role in dopaminergic neurodegeneration of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blesa J, Phani S, Jackson-Lewis V, Przedborski S (2012) Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012:845618. doi:10.1155/2012/845618

    Article  PubMed  PubMed Central  Google Scholar 

  2. Blandini F, Nappi G, Tassorelli C, Martignoni E (2000) Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62(1):63–88

    Article  CAS  PubMed  Google Scholar 

  3. Graybiel AM (1990) The basal ganglia and the initiation of movement. Rev Neurol (Paris) 146(10):570–574

    CAS  Google Scholar 

  4. Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann N Y Acad Sci 991:214–228

    Article  CAS  PubMed  Google Scholar 

  5. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587):979–980

    Article  CAS  PubMed  Google Scholar 

  6. Bove J, Zhou C, Jackson-Lewis V, Taylor J, Chu Y, Rideout HJ, Wu DC, Kordower JH, Petrucelli L, Przedborski S (2006) Proteasome inhibition and Parkinson’s disease modeling. Ann Neurol 60(2):260–264. doi:10.1002/ana.20937

    Article  CAS  PubMed  Google Scholar 

  7. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  CAS  PubMed  Google Scholar 

  8. Exner N, Lutz AK, Haass C, Winklhofer KF (2012) Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J 31(14):3038–3062. doi:10.1038/emboj.2012.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2(1):141–151. doi:10.1038/nprot.2006.342

    Article  CAS  PubMed  Google Scholar 

  10. Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47(6 Suppl 3):S161–170

    Article  CAS  PubMed  Google Scholar 

  11. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795. doi:10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  12. Ghosh A, Kanthasamy A, Joseph J, Anantharam V, Srivastava P, Dranka BP, Kalyanaraman B, Kanthasamy AG (2012) Anti-inflammatory and neuroprotective effects of an orally active apocynin derivative in pre-clinical models of Parkinson’s disease. J Neuroinflammation 9:241. doi:10.1186/1742-2094-9-241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rappold PM, Tieu K (2010) Astrocytes and therapeutics for Parkinson’s disease. Neurotherapeutics 7(4):413–423. doi:10.1016/j.nurt.2010.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andreoletti O, Levavasseur E, Uro-Coste E, Tabouret G, Sarradin P, Delisle MB, Berthon P, Salvayre R, Schelcher F, Negre-Salvayre A (2002) Astrocytes accumulate 4-hydroxynonenal adducts in murine scrapie and human Creutzfeldt-Jakob disease. Neurobiol Dis 11(3):386–393

    Article  CAS  PubMed  Google Scholar 

  15. Farooqui AA, Horrocks LA (2006) Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12(3):245–260. doi:10.1177/1073858405285923

    Article  CAS  PubMed  Google Scholar 

  16. Teismann P, Schulz JB (2004) Cellular pathology of Parkinson’s disease: astrocytes, microglia and inflammation. Cell Tissue Res 318(1):149–161. doi:10.1007/s00441-004-0944-0

    Article  PubMed  Google Scholar 

  17. Yun HM, Jin P, Han JY, Lee MS, Han SB, Oh KW, Hong SH, Jung EY, Hong JT (2013) Acceleration of the development of Alzheimer’s disease in amyloid beta-infused peroxiredoxin 6 overexpression transgenic mice. Mol Neurobiol 48(3):941–951. doi:10.1007/s12035-013-8479-6

    Article  CAS  PubMed  Google Scholar 

  18. Chae HZ, Chung SJ, Rhee SG (1994) Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 269(44):27670–27678

    CAS  PubMed  Google Scholar 

  19. Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28(1):32–40

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Feinstein SI, Fisher AB (2008) Peroxiredoxin 6 as an antioxidant enzyme: protection of lung alveolar epithelial type II cells from H2O2-induced oxidative stress. J Cell Biochem 104(4):1274–1285. doi:10.1002/jcb.21703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rahaman H, Zhou S, Dodia C, Feinstein SI, Huang S, Speicher D, Fisher AB (2012) Increased phospholipase A2 activity with phosphorylation of peroxiredoxin 6 requires a conformational change in the protein. Biochemistry 51(27):5521–5530. doi:10.1021/bi300380h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen JW, Dodia C, Feinstein SI, Jain MK, Fisher AB (2000) 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J Biol Chem 275(37):28421–28427. doi:10.1074/jbc.M005073200

    Article  CAS  PubMed  Google Scholar 

  23. Chatterjee S, Feinstein SI, Dodia C, Sorokina E, Lien YC, Nguyen S, Debolt K, Speicher D, Fisher AB (2011) Peroxiredoxin 6 phosphorylation and subsequent phospholipase A2 activity are required for agonist-mediated activation of NADPH oxidase in mouse pulmonary microvascular endothelium and alveolar macrophages. J Biol Chem 286(13):11696–11706. doi:10.1074/jbc.M110.206623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krishnaiah SY, Dodia C, Feinstein SI, Fisher AB (2013) p67(phox) terminates the phospholipase A(2)-derived signal for activation of NADPH oxidase (NOX2). FASEB J 27(5):2066–2073. doi:10.1096/fj.12-222133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim SY, Jo HY, Kim MH, Cha YY, Choi SW, Shim JH, Kim TJ, Lee KY (2008) H2O2-dependent hyperoxidation of peroxiredoxin 6 (Prdx6) plays a role in cellular toxicity via up-regulation of iPLA2 activity. J Biol Chem 283(48):33563–33568. doi:10.1074/jbc.M806578200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kwon HS, Bae YJ, Moon KA, Lee YS, Lee T, Lee KY, Kim TB, Park CS, Moon HB, Cho YS (2012) Hyperoxidized peroxiredoxins in peripheral blood mononuclear cells of asthma patients is associated with asthma severity. Life Sci 90(13–14):502–508. doi:10.1016/j.lfs.2012.01.003

    Article  CAS  PubMed  Google Scholar 

  27. Kim SY, Chun E, Lee KY (2011) Phospholipase A(2) of peroxiredoxin 6 has a critical role in tumor necrosis factor-induced apoptosis. Cell Death Differ 18(10):1573–1583. doi:10.1038/cdd.2011.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jin MH, Lee YH, Kim JM, Sun HN, Moon EY, Shong MH, Kim SU, Lee SH, Lee TH, Yu DY, Lee DS (2005) Characterization of neural cell types expressing peroxiredoxins in mouse brain. Neurosci Lett 381(3):252–257. doi:10.1016/j.neulet.2005.02.048

    Article  CAS  PubMed  Google Scholar 

  29. Power JH, Shannon JM, Blumbergs PC, Gai WP (2002) Nonselenium glutathione peroxidase in human brain : elevated levels in Parkinson’s disease and dementia with lewy bodies. Am J Pathol 161(3):885–894. doi:10.1016/S0002-9440(10)64249-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2(12):679–689. doi:10.1038/ncpneuro0355

    Article  CAS  PubMed  Google Scholar 

  31. Sun GY, Xu J, Jensen MD, Simonyi A (2004) Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res 45(2):205–213. doi:10.1194/jlr.R300016-JLR200

    Article  CAS  PubMed  Google Scholar 

  32. Fiebich BL, Hull M, Lieb K, Gyufko K, Berger M, Bauer J (1997) Prostaglandin E2 induces interleukin-6 synthesis in human astrocytoma cells. J Neurochem 68(2):704–709

    Article  CAS  PubMed  Google Scholar 

  33. Keller JN, Mattson MP (1998) Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Rev Neurosci 9(2):105–116

    Article  CAS  PubMed  Google Scholar 

  34. Tariq M, Khan HA, Al Moutaery K, Al Deeb S (2001) Protective effect of quinacrine on striatal dopamine levels in 6-OHDA and MPTP models of Parkinsonism in rodents. Brain Res Bull 54(1):77–82

    Article  CAS  PubMed  Google Scholar 

  35. Klivenyi P, Beal MF, Ferrante RJ, Andreassen OA, Wermer M, Chin MR, Bonventre JV (1998) Mice deficient in group IV cytosolic phospholipase A2 are resistant to MPTP neurotoxicity. J Neurochem 71(6):2634–2637

    Article  CAS  PubMed  Google Scholar 

  36. Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137(1):47–59. doi:10.1016/j.cell.2009.01.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Power JH, Asad S, Chataway TK, Chegini F, Manavis J, Temlett JA, Jensen PH, Blumbergs PC, Gai WP (2008) Peroxiredoxin 6 in human brain: molecular forms, cellular distribution and association with Alzheimer’s disease pathology. Acta Neuropathol 115(6):611–622. doi:10.1007/s00401-008-0373-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu J, Yu S, Sun AY, Sun GY (2003) Oxidant-mediated AA release from astrocytes involves cPLA(2) and iPLA(2). Free Radic Biol Med 34(12):1531–1543

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MISP) (No. MRC, 2008-0062275), by a grant (A101836) from the Korean Health Technology R&D Project, Ministry for Health, Welfare and Family Affairs, Republic of Korea. We extend our appreciation to Dr. Sanghyeon Kim (Associate Director for database management, SMRI Laboratory of Brain Research, Rockville, MD) for kindly providing the human brain test samples.

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Tae Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, HM., Choi, D.Y., Oh, K.W. et al. PRDX6 Exacerbates Dopaminergic Neurodegeneration in a MPTP Mouse Model of Parkinson’s Disease. Mol Neurobiol 52, 422–431 (2015). https://doi.org/10.1007/s12035-014-8885-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8885-4

Keywords

Navigation