Skip to main content

Advertisement

Log in

G1/S Cell Cycle Checkpoint Dysfunction in Lymphoblasts from Sporadic Parkinson’s Disease Patients

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease among aging individuals, affecting greatly the quality of their life. However, the pathogenesis of Parkinson’s disease is still incompletely understood to date. Increasing experimental evidence suggests that cell cycle reentry of postmitotic neurons precedes many instances of neuronal death. Since cell cycle dysfunction is not restricted to neurons, we investigated this issue in peripheral cells from patients suffering from sporadic PD and age-matched control individuals. Here, we describe increased cell cycle activity in immortalized lymphocytes from PD patients that is associated to enhanced activity of the cyclin D3/CDK6 complex, resulting in higher phosphorylation of the pRb family protein and thus, in a G1/S regulatory failure. Decreased degradation of cyclin D3, together with increased p21 degradation, as well as elevated levels of CDK6 mRNA and protein were found in PD lymphoblasts. Inhibitors of cyclin D3/CDK6 activity like sodium butyrate, PD-332991, and rapamycin were able to restore the response of PD cells to serum stimulation. We conclude that lymphoblasts from PD patients are a suitable model to investigate cell biochemical aspects of this disease. It is suggested that cyclin D3/CDK6-associated kinase activity could be potentially a novel therapeutic target for the treatment of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. de Rijk MC, Launer LJ, Berger K, Breteler MM, Dartigues JF, Baldereschi M, Fratiglioni L, Lobo A, Martinez-Lage J, Trenkwalder C, Hofman A (2000) Prevalence of Parkinson’s disease in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 54(11 Suppl 5):S21–23

    PubMed  Google Scholar 

  2. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  3. Mallucci G (2013) Spreading proteins in neurodegeneration: where do they take us? Brain 136(Pt 4):994–995. doi:10.1093/brain/awt072

    Article  PubMed  Google Scholar 

  4. Greenamyre JT, Hastings TG (2004) Biomedicine. Parkinson’s–divergent causes, convergent mechanisms. Science 304(5674):1120–1122. doi:10.1126/science.1098966

    Article  CAS  PubMed  Google Scholar 

  5. Copani A, Uberti D, Sortino MA, Bruno V, Nicoletti F, Memo M (2001) Activation of cell-cycle-associated proteins in neuronal death: a mandatory or dispensable path? Trends Neurosci 24(1):25–31

    Article  CAS  PubMed  Google Scholar 

  6. Herrup K, Neve R, Ackerman SL, Copani A (2004) Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci 24(42):9232–9239. doi:10.1523/jneurosci.3347-04.2004

    Article  CAS  PubMed  Google Scholar 

  7. Hoglinger GU, Breunig JJ, Depboylu C, Rouaux C, Michel PP, Alvarez-Fischer D, Boutillier AL, Degregori J, Oertel WH, Rakic P, Hirsch EC, Hunot S (2007) The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proc Natl Acad Sci U S A 104(9):3585–3590. doi:10.1073/pnas.0611671104

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mandel SA, Fishman T, Youdim MB (2007) Gene and protein signatures in sporadic Parkinson’s disease and a novel genetic model of PD. Parkinsonism Relat Disord 13(Suppl 3):S242–247. doi:10.1016/s1353-8020(08)70009-9

    Article  PubMed  Google Scholar 

  9. Mutez E, Larvor L, Lepretre F, Mouroux V, Hamalek D, Kerckaert JP, Perez-Tur J, Waucquier N, Vanbesien-Mailliot C, Duflot A, Devos D, Defebvre L, Kreisler A, Frigard B, Destee A, Chartier-Harlin MC (2011) Transcriptional profile of Parkinson blood mononuclear cells with LRRK2 mutation. Neurobiol Aging 32(10):1839–1848. doi:10.1016/j.neurobiolaging.2009.10.016

    Article  CAS  PubMed  Google Scholar 

  10. Scherzer CR, Eklund AC, Morse LJ, Liao Z, Locascio JJ, Fefer D, Schwarzschild MA, Schlossmacher MG, Hauser MA, Vance JM, Sudarsky LR, Standaert DG, Growdon JH, Jensen RV, Gullans SR (2007) Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc Natl Acad Sci U S A 104(3):955–960. doi:10.1073/pnas.0610204104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sullivan PF, Fan C, Perou CM (2006) Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 141B(3):261–268. doi:10.1002/ajmg.b.30272

    Article  PubMed  Google Scholar 

  12. Amenta F, Bronzetti E, Cantalamessa F, El-Assouad D, Felici L, Ricci A, Tayebati SK (2001) Identification of dopamine plasma membrane and vesicular transporters in human peripheral blood lymphocytes. J Neuroimmunol 117(1–2):133–142

    Article  CAS  PubMed  Google Scholar 

  13. Shinde S, Pasupathy K (2006) Respiratory-chain enzyme activities in isolated mitochondria of lymphocytes from patients with Parkinson’s disease: preliminary study. Neurol India 54(4):390–393

    Article  PubMed  Google Scholar 

  14. Blandini F, Sinforiani E, Pacchetti C, Samuele A, Bazzini E, Zangaglia R, Nappi G, Martignoni E (2006) Peripheral proteasome and caspase activity in Parkinson disease and Alzheimer disease. Neurology 66(4):529–534. doi:10.1212/01.wnl.0000198511.09968.b3

    Article  CAS  PubMed  Google Scholar 

  15. Bartolome F, de Las CN, Munoz U, Bermejo F, Martin-Requero A (2007) Impaired apoptosis in lymphoblasts from Alzheimer’s disease patients: cross-talk of Ca2+/calmodulin and ERK1/2 signaling pathways. Cell Mol Life Sci 64(11):1437–1448. doi:10.1007/s00018-007-7081-3

    Article  CAS  PubMed  Google Scholar 

  16. Munoz U, Bartolome F, Bermejo F, Martin-Requero A (2008) Enhanced proteasome-dependent degradation of the CDK inhibitor p27(kip1) in immortalized lymphocytes from Alzheimer’s dementia patients. Neurobiol Aging 29(10):1474–1484. doi:10.1016/j.neurobiolaging.2007.03.013

    Article  CAS  PubMed  Google Scholar 

  17. Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. Arch Neurol 56(1):33–39

    Article  CAS  PubMed  Google Scholar 

  18. Ibarreta D, Urcelay E, Parrilla R, Ayuso MS (1998) Distinct pH homeostatic features in lymphoblasts from Alzheimer’s disease patients. Ann Neurol 44(2):216–222. doi:10.1002/ana.410440212

    Article  CAS  PubMed  Google Scholar 

  19. Nagy Z (2007) The dysregulation of the cell cycle and the diagnosis of Alzheimer’s disease. Biochim Biophys Acta 1772(4):402–408. doi:10.1016/j.bbadis.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  20. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323–330

    Article  CAS  PubMed  Google Scholar 

  21. Lundberg AS, Weinberg RA (1998) Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-CDK complexes. Mol Cell Biol 18(2):753–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mittnacht S (1998) Control of pRB phosphorylation. Curr Opin Genet Dev 8(1):21–27

    Article  CAS  PubMed  Google Scholar 

  23. Ayala YM, Misteli T, Baralle FE (2008) TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc Natl Acad Sci U S A 105(10):3785–3789. doi:10.1073/pnas.0800546105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chanson JB, Echaniz-Laguna A, Vogel T, Mohr M, Benoilid A, Kaltenbach G, Kiesmann M (2010) TDP43-positive intraneuronal inclusions in a patient with motor neuron disease and Parkinson’s disease. Neurodegener Dis 7(4):260–264. doi:10.1159/000273591

    Article  PubMed  Google Scholar 

  25. Higashi S, Iseki E, Yamamoto R, Minegishi M, Hino H, Fujisawa K, Togo T, Katsuse O, Uchikado H, Furukawa Y, Kosaka K, Arai H (2007) Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res 1184:284–294. doi:10.1016/j.brainres.2007.09.048

    Article  CAS  PubMed  Google Scholar 

  26. Caccamo A, Magri A, Oddo S (2010) Age-dependent changes in TDP-43 levels in a mouse model of Alzheimer disease are linked to Aβ oligomers accumulation. Mol Neurodegener 5:51. doi:10.1186/1750-1326-5-51

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM (2007) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321(3):892–901. doi:10.1124/jpet.107.120188

    Article  CAS  PubMed  Google Scholar 

  28. Garcia-Morales P, Hernando E, Carrasco-Garcia E, Menendez-Gutierrez MP, Saceda M, Martinez-Lacaci I (2006) Cyclin D3 is down-regulated by rapamycin in HER-2-overexpressing breast cancer cells. Mol Cancer Ther 5(9):2172–2181. doi:10.1158/1535-7163.mct-05-0363

    Article  CAS  PubMed  Google Scholar 

  29. Alquezar C, Esteras N, Alzualde A, Moreno F, Ayuso MS, de Lopez MA, Martin-Requero A (2012) Inactivation of CDK/pRb pathway normalizes survival pattern of lymphoblasts expressing the FTLD-progranulin mutation c.709-1G>A. PLoS One 7(5):e37057. doi:10.1371/journal.pone.0037057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alquezar C, Esteras N, Bartolome F, Merino JJ, Alzualde A, de Lopez MA, Martin-Requero A (2012) Alteration in cell cycle-related proteins in lymphoblasts from carriers of the c.709-1G>A PGRN mutation associated with FTLD-TDP dementia. Neurobiol Aging 33(2):429 e427–420. doi:10.1016/j.neurobiolaging.2010.11.020

    Article  Google Scholar 

  31. Bialopiotrowicz E, Kuzniewska B, Kachamakova-Trojanowska N, Barcikowska M, Kuznicki J, Wojda U (2011) Cell cycle regulation distinguishes lymphocytes from sporadic and familial Alzheimer’s disease patients. Neurobiol Aging 32(12):2319 e2313–2326. doi:10.1016/j.neurobiolaging.2010.04.017

    Article  Google Scholar 

  32. de las Cuevas N, Urcelay E, Hermida OG, Saiz-Diaz RA, Bermejo F, Ayuso MS, Martin-Requero A (2003) Ca2+/calmodulin-dependent modulation of cell cycle elements pRb and p27kip1 involved in the enhanced proliferation of lymphoblasts from patients with Alzheimer dementia. Neurobiol Dis 13(3):254–263

    Article  PubMed  Google Scholar 

  33. Nagy Z, Combrinck M, Budge M, McShane R (2002) Cell cycle kinesis in lymphocytes in the diagnosis of Alzheimer’s disease. Neurosci Lett 317(2):81–84

    Article  CAS  PubMed  Google Scholar 

  34. Hernandez-Ortega K, Quiroz-Baez R, Arias C (2011) Cell cycle reactivation in mature neurons: a link with brain plasticity, neuronal injury and neurodegenerative diseases? Neurosci Bull 27(3):185–196. doi:10.1007/s12264-011-1002-z

    Article  PubMed  PubMed Central  Google Scholar 

  35. Husseman JW, Nochlin D, Vincent I (2000) Mitotic activation: a convergent mechanism for a cohort of neurodegenerative diseases. Neurobiol Aging 21(6):815–828

    Article  CAS  PubMed  Google Scholar 

  36. Polager S, Ginsberg D (2008) E2F—at the crossroads of life and death. Trends Cell Biol 18(11):528–535. doi:10.1016/j.tcb.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  37. Hu X, Bryington M, Fisher AB, Liang X, Zhang X, Cui D, Datta I, Zuckerman KS (2002) Ubiquitin/proteasome-dependent degradation of d-type cyclins is linked to tumor necrosis factor-induced cell cycle arrest. J Biol Chem 277(19):16528–16537. doi:10.1074/jbc.M109929200

    Article  CAS  PubMed  Google Scholar 

  38. Nakayama KI, Nakayama K (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6(5):369–381. doi:10.1038/nrc1881

    Article  CAS  PubMed  Google Scholar 

  39. Hleb M, Murphy S, Wagner EF, Hanna NN, Sharma N, Park J, Li XC, Strom TB, Padbury JF, Tseng YT, Sharma S (2004) Evidence for cyclin D3 as a novel target of rapamycin in human T lymphocytes. J Biol Chem 279(30):31948–31955. doi:10.1074/jbc.M400638200

    Article  CAS  PubMed  Google Scholar 

  40. Dormann D, Capell A, Carlson AM, Shankaran SS, Rodde R, Neumann M, Kremmer E, Matsuwaki T, Yamanouchi K, Nishihara M, Haass C (2009) Proteolytic processing of TAR DNA binding protein-43 by caspases produces C-terminal fragments with disease defining properties independent of progranulin. J Neurochem 110(3):1082–1094. doi:10.1111/j.1471-4159.2009.06211.x

    Article  CAS  PubMed  Google Scholar 

  41. Zhang YJ, Xu YF, Dickey CA, Buratti E, Baralle F, Bailey R, Pickering-Brown S, Dickson D, Petrucelli L (2007) Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci 27(39):10530–10534. doi:10.1523/jneurosci.3421-07.2007

    Article  CAS  PubMed  Google Scholar 

  42. Liu X, Li D, Zhang W, Guo M, Zhan Q (2012) Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J 31(23):4415–4427. doi:10.1038/emboj.2012.292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W, Dessureault S, Moscinski LC, Rezania D, Dalton WS, Sotomayor E, Tao J, Cheng JQ (2010) microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 115(13):2630–2639. doi:10.1182/blood-2009-09-243147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2008) miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 36(16):5391–5404. doi:10.1093/nar/gkn522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu D, Takeshita F, Hino Y, Fukunaga S, Kudo Y, Tamaki A, Matsunaga J, Takahashi RU, Takata T, Shimamoto A, Ochiya T, Tahara H (2011) miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 193(2):409–424. doi:10.1083/jcb.201010100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smorag L, Zheng Y, Nolte J, Zechner U, Engel W, Pantakani DV (2012) MicroRNA signature in various cell types of mouse spermatogenesis: evidence for stage-specifically expressed miRNA-221, -203 and -34b-5p mediated spermatogenesis regulation. Biol Cell 104(11):677–692. doi:10.1111/boc.201200014

    Article  CAS  PubMed  Google Scholar 

  47. Margis R, Rieder CR (2011) Identification of blood microRNAs associated to Parkinson’s disease. J Biotechnol 152(3):96–101. doi:10.1016/j.jbiotec.2011.01.023

    Article  CAS  PubMed  Google Scholar 

  48. Minones-Moyano E, Porta S, Escaramis G, Rabionet R, Iraola S, Kagerbauer B, Espinosa-Parrilla Y, Ferrer I, Estivill X, Marti E (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20(15):3067–3078. doi:10.1093/hmg/ddr210

    Article  CAS  PubMed  Google Scholar 

  49. Soreq L, Salomonis N, Bronstein M, Greenberg DS, Israel Z, Bergman H, Soreq H (2013) Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front Mol Neurosci 6:10. doi:10.3389/fnmol.2013.00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, Vila M (2010) Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci 30(37):12535–12544. doi:10.1523/jneurosci.1920-10.2010

    Article  CAS  PubMed  Google Scholar 

  51. Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA (2010) Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease. J Neurosci 30(3):1166–1175. doi:10.1523/jneurosci.3944-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rane P, Shields J, Heffernan M, Guo Y, Akbarian S, King JA (2012) The histone deacetylase inhibitor, sodium butyrate, alleviates cognitive deficits in pre-motor stage PD. Neuropharmacology 62(7):2409–2412. doi:10.1016/j.neuropharm.2012.01.026

    Article  CAS  PubMed  Google Scholar 

  53. St Laurent R, O’Brien LM, Ahmad ST (2013) Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced drosophila model of Parkinson’s disease. Neuroscience 246:382–390. doi:10.1016/j.neuroscience.2013.04.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bove J, Martinez-Vicente M, Vila M (2011) Fighting neurodegeneration with rapamycin: mechanistic insights. Nat Rev Neurosci 12(8):437–452. doi:10.1038/nrn3068

    Article  CAS  PubMed  Google Scholar 

  55. Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkuhler C (2007) HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res 17(3):195–211. doi:10.1038/sj.cr.7310149

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from Ministerio de Economía y Competitividad (SAF2011-28603) and Fundación Ramón Areces to AMR, and Fundación Neurociencias y Envejecimiento to JAM. We would like to thank to all patients, their families, and clinicians involved in this study. The skillful technical assistance of Eduardo Parrilla is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángeles Martín-Requero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esteras, N., Alquézar, C., Bartolomé, F. et al. G1/S Cell Cycle Checkpoint Dysfunction in Lymphoblasts from Sporadic Parkinson’s Disease Patients. Mol Neurobiol 52, 386–398 (2015). https://doi.org/10.1007/s12035-014-8870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8870-y

Keywords

Navigation