Skip to main content

Advertisement

Log in

Maternal Subclinical Hypothyroidism Impairs Neurodevelopment in Rat Offspring by Inhibiting the CREB Signaling Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Thyroid hormone is indispensable for fetal brain development, and maternal thyroid hormone deficiency is thought to result in severe and irreversible brain impairments in learning and memory. Epidemiological and animal studies by our group had shown that maternal subclinical hypothyroidism had significant negative impact on neurodevelopment. But, the underlying mechanisms responsible for these neurological alterations remain unclear. In the present study, we performed thyroidectomy and injected L-T4 daily in Wistar rats to induce maternal subclinical hypothyroidism. Our data indicated that the pups from subclinical group showed prolonged latencies during the learning process in the Morris water maze as compared to the control group. Transcription factor cAMP response element-binding protein (CREB) signaling pathway is closely associated with synaptic plasticity, learning, and memory. Consistent with behavioral results, Western blotting also showed decreased activation of three important upstream modulators of CREB signaling pathway: phospho-mitogen-activated protein kinases (P-ERK1/2), phospho-calcium-dependent-calmodulin kinase IV (P-CaMKIV), phospho-serine/threonine protein kinase AKT(P-AKT), as well as total CREB and phospho-CREB as compared to the control at postnatal day 7 (PND 7) in hippocampus. Our findings suggested that decreased activation of the CREB signaling pathway in pups was related to impairments of cognitive function caused by maternal subclinical hypothyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8
Fig 9
Fig 10

Similar content being viewed by others

References

  1. Ahmed OM, El-Gareib AW, El-bakry AM, Abd El-Tawab SM, Ahmed RG (2008) Thyroid hormones states and brain development interactions. Int J Devl Neurosci 26:147–209

    Article  CAS  Google Scholar 

  2. Mohacsik P, Zeold A, Bianco AC, Gereben B (2011) Thyroid hormone and the neuroglia: both source and target. J Thyroid Res. doi:10.4061/2011/215718

    PubMed  PubMed Central  Google Scholar 

  3. Morreale de Escobar G, Calvo R, Obregon M, Escobar del Rey F (1990) Contribution of maternal thyroxine to fetal thyroxine pools in normal rats near term. Endocrinology 126:2765–2767

    Article  CAS  PubMed  Google Scholar 

  4. Calvo RM, Jauniaux E, Gulbis B, AsuncionM GC, Contempre B, Morreale de Escobar G (2002) Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development. J Clin Endocrinol Metab 87:1768–1777

    Article  CAS  PubMed  Google Scholar 

  5. Anderson GW, Schoonover CM, Jones SA (2003) Control of thyroid hormone action in the developing rat brain. Thyroid 13:1039–1056

    Article  CAS  PubMed  Google Scholar 

  6. Bernal J, Guadano-Ferraz A, Morte B (2003) Perspectives in the study of thyroid hormone in brain development and function. Thyroid 13:1005–1012

    Article  CAS  PubMed  Google Scholar 

  7. Mastorako G, Karoutsou EI, Mizamtsidi M, Greatsas G (2007) The menace of endocrine diruptors on thyroid hormone physiology and their impact on intrauterine development. Endocrine 31:219–237

    Article  Google Scholar 

  8. Zoeller RT, Rover J (2004) Timing of thyroid hormone action in the developing brain: clinical observations and experimental findings. J Neuroendocrinol 16:809–818

    Article  CAS  PubMed  Google Scholar 

  9. Shan ZY, Chen YY, Teng WP, Yu XH, Li CY, Zhou WW, Gao B, Zhou JR, Ding B, Ma Y, Wu Y, Liu Q, Xu H, Liu W, Li J, Wang WW, Li YB, Fan CL, Wang H, Guo R, Zhang HM (2009) A study for maternal thyroid hormone deficiency during the first half of pregnancy in China. Eur J Clin Invest 39:37

    Article  CAS  PubMed  Google Scholar 

  10. Teng WP, Shan ZY, Patil-Sisodia K, Cooper DS (2013) Hypothyroidism in pregnancy. Lancet Diabetes Endocrinol 1:228–37

    Article  CAS  PubMed  Google Scholar 

  11. Lazarus JH, Bestwick JP, Channon S, Clin-Psych D, Paradice R, Maina A, Rees R, Chiusano E, John R, Guaraldo V, George LM, Perona M, Dall’Amico D, Parkes AB, Joomun M, Wald NJ (2012) Antenatal thyroid screening and childhood cognitive function. N Engl J Med 366:493–501

    Article  CAS  PubMed  Google Scholar 

  12. Potlukova E, Potluka O, Jiskra J, Limanova Z, Telicka Z, Bartakova J, Springer D (2012) Is age a risk factor for hypothyroidism in pregnancy? an analysis of 5223 pregnant women. J Clin Endocrinol Metab 97:1945–52

    Article  CAS  PubMed  Google Scholar 

  13. Opazo MC, Gianini A, Pancetti F, Azkcona G, Alarco´n L, Lizana R, Noches V, Gonzalez PA, Porto M, Mora S, Rosenthal D, Eugenin E, Naranjo D, Bueno SM, Kalergis AM, Riedel CA (2008) Maternal hypothyroxinemia impairs spatial learning and synaptic nature and function in the offspring. Endocrinology 149:5097–5106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Shan Z, Teng W, Yu X, Li Y, Fan C, Teng X, Guo R, Wang H, Li J, Chen Y, Wang W, Chawinga M, Zhang L, Yang L, Zhao Y, Hua T (2010) Abnormalities of maternal thyroid function during pregnancy affect neuropsychological development of their children at 25–30 months. Clin Endocrinol 72(6):825–9

    Article  CAS  Google Scholar 

  15. Kornmeier J, Sosic-Vasic Z (2012) parallels between spacing effects during behavioural and celluar learning. Front Hum Neurosci 6:203

    PubMed  PubMed Central  Google Scholar 

  16. Escobar-Morreale HF, Obregon MJ, Escobar del Rey F, Morreale de Escobar G (1995) Replacement therapy for hypothyroidism with thyroxine alone does not ensure euthyroidism in all tissues, as studied in thyroidectomized rats. J Clin Invest 96:2828–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu L, Teng W, Shan Z (2012) Treatment with levothyroxine in pregnant rats with subclinical hypothyroidism improves cell migration in the developing brain of the progeny. J Endocrinol Invest 35(5):490–496

    CAS  PubMed  Google Scholar 

  18. Liu DJ, Teng WP, Shan ZY, Yu XH, Gao Y, Wang S, Fan CL, Wang H, Zhang HM (2010) The effect of maternal subclinical hypothyroidism during pregnancy on brain development in rat offspring. Thyroid 20:909–15

    Article  CAS  PubMed  Google Scholar 

  19. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Wei W, Wang Y, Dong J, Song B, Min H, Teng W, Chen J (2013) Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway. Toxicol Appl Pharmacol 271:257–65

    Article  CAS  PubMed  Google Scholar 

  21. Wang S, Teng W, Gao Y, Fan C, Zhang H, Shan Z (2012) Early levothyroxine treatment on maternal subclinical hypothyroidism improves spatial learning of offspring in rats. J Neuroendocrinol 24:841–848

    Article  CAS  PubMed  Google Scholar 

  22. Barnes CA (1988) Spatial learning and memory processes: the search for their neurobiological mechanisms in the rat. Trends Neurosci 11:163–169

    Article  CAS  PubMed  Google Scholar 

  23. Siegelbaum SA, Kandel ER (1991) Learning-related synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 1:113–120

    Article  CAS  PubMed  Google Scholar 

  24. Dong J, Liu WY, Wang Y, Hou Y, Qi Xi C (2009) Developmental iodine deficiency resulting in hypothyroidism reduces hippocampal ERK1/2 and CREB in lactational and adolescent rats. BMC Neurosci 10:149

    Article  PubMed  PubMed Central  Google Scholar 

  25. Patterson M, Yasuda R (2011) Signalling pathways underlying structural plasticity of dendritic spines. Br J Pharmacol 163:1626–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaang BK, Kandel ER, Grant SG (1993) Activation of cAMP-responsive genes by stimuli that produce long-term facilitation in Aplysia. Sens Neuron 10:427–35

    Article  CAS  Google Scholar 

  27. Barco A, Alarcon JM, Kandel ER (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108:689–703

    Article  CAS  PubMed  Google Scholar 

  28. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  CAS  PubMed  Google Scholar 

  29. Gerges NZ, Alkadhi KA (2004) Hypothyroidism impairs late LTP in CA1 region but not in dentate gyrus of the intact rat hippocampus: MAPK involvement. Hippocampus 14:40–45

    Article  CAS  PubMed  Google Scholar 

  30. Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173–83

    Article  CAS  PubMed  Google Scholar 

  31. Wymann MP, Zvelebil M, Laffargue M (2003) Phosphoinositide 3-kinase signaling-which way to target? Trends Neurosci 24:366–376

    CAS  Google Scholar 

  32. Hawkins PT, Anderson KE, Davidson K, Stephens LR (2006) Signalling throughclass I PI3Ks in mammalian cells. Biochem Soc Trans 34:647–662

    Article  CAS  PubMed  Google Scholar 

  33. Ho N, Liauw JA, Blaeser F, Wei F, Hanissian S, Muglia LM, Wozniak DF, Nard A, Arvin KL, Holtzman DM, Linden DJ, Zhuo M, Muglia LJ, Chatila TA (2000) Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice. J Neurosci 20:6459–6472

    CAS  PubMed  Google Scholar 

  34. Kelly A, Lynch MA (2000) Long-term potentiation in dentate gyrus of the rat is inhibited by the phosphoinositide 3-kinase inhibitor, wortmannin. Neuropharmacol 39:643–651

    Article  CAS  Google Scholar 

  35. Alzoubi KH, Gerges NZ, Aleisa AM, Alkadhi KA (2009) Levothyroxin restores hypothyroidism-induced impairment of hippocampus-dependent learning and memory: behavioral, electrophysiological, and molecular studies. Hippocampus 19:66–78

    Article  CAS  PubMed  Google Scholar 

  36. Poser S, Storm DR (2001) Role of Ca2+ stimulated adenylyl cyclases in LTP and memory formation. J Devl Neurosci 19:387–394

    Article  CAS  Google Scholar 

  37. Miyamoto E (2006) Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J Pharmacol Sci 100:433–442

    Article  CAS  PubMed  Google Scholar 

  38. Alzoubi KH, Alkadhi KA (2006) A critical role of CREB in the impairment of late-phase LTP by adult onset hypothyroidism. Exp Neurol 203:63–71

    Article  PubMed  Google Scholar 

  39. Roberson ED, English JD, Adams JP, Selcher JC, Kondratick C, Sweatt JD (1999) The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus. J Neurosci 19:4337–4348

    CAS  PubMed  Google Scholar 

  40. Adams JP, Roberson ED, English JD, Selcher JC, Sweatt JD (2000) MAPK regulation of gene expression in the central nervous system. Acta Neurobiol Exp (Wars) 60:377–394

    CAS  Google Scholar 

  41. Kelleher RJ III, Govindarajan A, Jung HY, Kang H, Tonegawa S (2004) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116:467–479

    Article  CAS  PubMed  Google Scholar 

  42. Taylor MA, Swant J, Wagner JJ, Fisher JW, Ferguson DC (2008) Lower thyroid compensatory reserve of rat pups after maternal hypothyroidism: correlation of thyroid, hepatic, and cerebrocortical biomarkers with hippocampal neurophysiology. Endocrinology 149(7):3521–3530

    Article  CAS  PubMed  Google Scholar 

  43. Moorman S, Mello CV, Bolhuis JJ (2011) From songs to synapses: molecular mechanisms of birdsong memory. molecular mechanisms of auditory learning in songbirds involve immediate early genes, including zenk and arc, the ERK/MAPK pathway and synapsins. Bioessays 33(5):377–85

    Article  CAS  PubMed  Google Scholar 

  44. Sato K, Suematsu A, Nakashima T, Takemoto-Kimura S, Aoki K, Morishita Y, Asahara H, Ohya K, Yamaguchi A, Takai T, Kodama T, Chatila TA, Bito H, Takayanagi H (2006) Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med 12:1410–6

    Article  CAS  PubMed  Google Scholar 

  45. Marsden WN (2013) Synaptic plasticity in depression: molecular, cellular and functional correlates. Prog Neuropsychopharmacol Biol Psychiatry 43:168–84

    Article  CAS  PubMed  Google Scholar 

  46. Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11:297–305

    Article  CAS  PubMed  Google Scholar 

  47. Katso R, Okkenhaug K, Ahmad K, White S, Timms J, Waterfield MD (2001) Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 17:615–675

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the 973 Science and Technology Research Foundation, Ministry of Science and Technology in China (Grant 2011CB512112); the Chinese National Natural Science Foundation (Grant 81170730, 30971400); and Program for Liaoning Excellent Talents in University (Grant LR2011022).

Conflict of Interest

The authors declares that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongyan Shan or Weiping Teng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Fan, Y., Yu, X. et al. Maternal Subclinical Hypothyroidism Impairs Neurodevelopment in Rat Offspring by Inhibiting the CREB Signaling Pathway. Mol Neurobiol 52, 432–441 (2015). https://doi.org/10.1007/s12035-014-8855-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8855-x

Keywords

Navigation