Skip to main content
Log in

Alteration of Interaction Between Astrocytes and Neurons in Different Stages of Diabetes: a Nuclear Magnetic Resonance Study Using [1-13C]Glucose and [2-13C]Acetate

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Increasing evidence has shown that the brain is a site of diabetic end-organ damage. This study investigates cerebral metabolism and the interactions between astrocytes and neurons at different stages of diabetes to identify the potential pathogenesis of diabetic encephalopathy. [1-13C]glucose or [2-13C]acetate is infused into 1- and 15-week diabetic rats, the brain extracts of which are analyzed by using 1H and 13C magnetic resonance spectroscopy. The 13C-labeling pattern and enrichment of cerebral metabolites are also investigated. The increased 13C incorporation in the glutamine, glutamate, and γ-aminobutyric acid carbons from [2-13C]acetate suggests that the astrocytic mitochondrial metabolism is enhanced in 1-week diabetic rats. By contrast, the decreased labeling from [1-13C]glucose reflected that the neuronal mitochondrial metabolism is impaired. As diabetes developed to 15 weeks, glutamine and glutamate concentrations significantly decreased. The increased labeling of glutamine C4 but unchanged labeling of glutamate C4 from [2-13C]acetate suggests decreased astrocyte supply to the neurons. In addition, the enhanced pyruvate recycling pathway manifested by the increased lactate C2 enrichment in 1-week diabetic rats is weakened in 15-week diabetic rats. Our study demonstrates the overall metabolism disturbances, changes in specific metabolic pathways, and interaction between astrocytes and neurons during the onset and development of diabetes. These results contribute to the mechanistic understanding of diabetes pathogenesis and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DM:

Diabetes mellitus

NAA:

N-acetyl aspartate

m-Ins:

Myo-inositol

1H NMR:

Proton nuclear magnetic resonance

Cho:

Choline

LDH:

Lactate dehydrogenase

PDH:

Pyruvate dehydrogenase

PC:

Pyruvate carboxylase

MCA:

Monocarboxylic acid

GS:

Glutamine synthetase

Glu:

Glutamate

Gln:

Glutamine

TCA:

Tricarboxylic acid

ALAT:

Alanine aminotransferase

References

  1. American Diabetes Association (2002) Standards of medical care for patients with diabetes mellitus. Diabetes Care 25(1):213–229

    Article  Google Scholar 

  2. Miles WR, Root HF (1922) Psychologic tests applied in diabetic patients. Arch Intern Med 30(6):767–777

    Article  Google Scholar 

  3. Russell ND (1950) The nervous system complications in diabetes mellitus with special reference to cerebrovascular changes. J Nerv Ment Dis 111(3):181–206

    Article  Google Scholar 

  4. Biessels GJ, Koffeman A, Scheltens P (2006) Diabetes and cognitive impairment. Clinical diagnosis and brain imaging in patients attending a memory clinic. J Neurol 253(4):477–482

    Article  PubMed  Google Scholar 

  5. Kodl CT, Seaquist ER (2008) Cognitive dysfunction and diabetes mellitus. Endocr Rev 29(4):494–511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Li ZG, Zhang W, Grunberger G, Sima AA (2002) Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res 946(2):221–231

    Article  CAS  PubMed  Google Scholar 

  7. Sima AA, Li ZG (2005) The effect of C-peptide on cognitive dysfunction and hippocampal apoptosis in type 1 diabetic rats. Diabetes 54(5):1497–1505

    Article  CAS  PubMed  Google Scholar 

  8. Kodl CT, Franc DT, Rao JP, Anderson FS, Thomas W, Mueller BA, Lim KO, Seaquist ER (2008) Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes that correlate with reduced neurocognitive function. Diabetes 57(11):3083–3089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wessels AM, Simsek S, Remijnse PL, Veltman DJ, Biessels GJ, Barkhof F, Scheltens P, Snoek FJ, Heine RJ, Rombouts SA (2006) Voxel-based morphometry demonstrates reduced grey matter density on brain MRI in patients with diabetic retinopathy. Diabetologia 49(10):2474–2480

    Article  CAS  PubMed  Google Scholar 

  10. Biessels GJ, Kappelle AC, Bravenboer B, Erkelens DW, Gispen WH (1994) Cerebral function in diabetes mellitus. Diabetologia 37(7):643–650

    Article  CAS  PubMed  Google Scholar 

  11. Heikkila O, Lundbom N, Timonen M, Groop PH, Heikkinen S, Makimattila S (2009) Hyperglycaemia is associated with changes in the regional concentrations of glucose and myo-inositol within the brain. Diabetologia 52(3):534–540

    Article  CAS  PubMed  Google Scholar 

  12. Makimattila S, Malmberg-Ceder K, Hakkinen AM, Vuori K, Salonen O, Summanen P, Yki-Jarvinen H, Kaste M, Heikkinen S, Lundbom N, Roine RO (2004) Brain metabolic alterations in patients with type 1 diabetes-hyperglycemia-induced injury. J Cereb Blood Flow Metab 24(12):1393–1399

    Article  PubMed  Google Scholar 

  13. Duelli R, Maurer MH, Staudt R, Heiland S, Duembgen L, Kuschinsky W (2000) Increased cerebral glucose utilization and decreased glucose transporter Glut1 during chronic hyperglycemia in rat brain. Brain Res 858(2):338–347

    Article  CAS  PubMed  Google Scholar 

  14. Mansour HA, Newairy AS, Yousef MI, Sheweita SA (2002) Biochemical study on the effects of some Egyptian herbs in alloxan-induced diabetic rats. Toxicology 170(3):221–228

    Article  CAS  PubMed  Google Scholar 

  15. Ahmed N, Zahra N (2011) Neurochemical correlates of alloxan diabetes: glucose and related brain metabolism in the rat. Neurochem Res 36(3):494–505

    Article  CAS  PubMed  Google Scholar 

  16. Scafidi S, O’Brien J, Hopkins I, Robertson C, Fiskum G, McKenna M (2009) Delayed cerebral oxidative glucose metabolism after traumatic brain injury in young rats. J Neurochem 109(Suppl 1):189–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Baydas G, Nedzvetskii VS, Tuzcu M, Yasar A, Kirichenko SV (2003) Increase of glial fibrillary acidic protein and S-100B in hippocampus and cortex of diabetic rats: effects of vitamin E. Eur J Pharmacol 462(1–3):67–71

    Article  CAS  PubMed  Google Scholar 

  18. Oner P, Oztas B, Kocak H (1997) Brain cortex Na(+)-K + ATPase activities in streptozotocin-diabetic and pentylenetetrazol-epileptic rats. Pharmacol Res 36(1):69–72

    Article  CAS  PubMed  Google Scholar 

  19. Yamato T, Misumi Y, Yamasaki S, Kino M, Aomine M (2004) Diabetes mellitus decreases hippocampal release of neurotransmitters: an in vivo microdialysis study of awake, freely moving rats. Diabetes Nutr Metab 17(3):128–136

    CAS  PubMed  Google Scholar 

  20. Melo TM, Nehlig A, Sonnewald U (2005) Metabolism is normal in astrocytes in chronically epileptic rats: a 13C NMR study of neuronal-glial interactions in a model of temporal lobe epilepsy. J Cereb Blood Flow Metab 25(10):1254–1264

    Article  PubMed  Google Scholar 

  21. Lin AP, Shic F, Enriquez C, Ross BD (2003) Reduced glutamate neurotransmission in patients with Alzheimer’s disease—an in vivo 13C magnetic resonance spectroscopy study. MAGMA 16(1):29–42

  22. Melo TM, Sonnewald U, Bastholm IA, Nehlig A (2007) Astrocytes may play a role in the etiology of absence epilepsy: a comparison between immature GAERS not yet expressing seizures and adults. Neurobiol Dis 28(2):227–235

    Article  PubMed  Google Scholar 

  23. Mason GF, Petersen KF, Lebon V, Rothman DL, Shulman GI (2006) Increased brain monocarboxylic acid transport and utilization in type 1 diabetes. Diabetes 55(4):929–934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Miccheli A, Puccetti C, Capuani G, Di Cocco ME, Giardino L, Calza L, Battaglia A, Battistin L, Conti F (2003) [1-13C]Glucose entry in neuronal and astrocytic intermediary metabolism of aged rats. A study of the effects of nicergoline treatment by 13C NMR spectroscopy. Brain Res 966(1):116–125

    Article  CAS  PubMed  Google Scholar 

  25. Banasr M, Chowdhury GM, Terwilliger R, Newton SS, Duman RS, Behar KL, Sanacora G (2010) Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry 15(5):501–511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Deelchand DK, Shestov AA, Koski DM, Ugurbil K, Henry PG (2009) Acetate transport and utilization in the rat brain. J Neurochem 109(Suppl 1):46–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gao HC, Xiang Y, Sun NL, Zhu H, Wang YQ, Liu ML, Ma YY, Lei H (2007) Metabolic changes in rat prefrontal cortex and hippocampus induced by chronic morphine treatment studied ex vivo by high resolution 1H NMR spectroscopy. Neurochem Int 50(2):386–394

    Article  CAS  PubMed  Google Scholar 

  28. Henry PG, Oz G, Provencher S, Gruetter R (2003) Toward dynamic isotopomer analysis in the rat brain in vivo: automatic quantitation of 13C NMR spectra using LCModel. NMR Biomed 16(6–7):400–412

    Article  CAS  PubMed  Google Scholar 

  29. Serres S, Raffard G, Franconi JM, Merle M (2008) Close coupling between astrocytic and neuronal metabolisms to fulfill anaplerotic and energy needs in the rat brain. J Cereb Blood Flow Metab 28(4):712–724

    Article  CAS  PubMed  Google Scholar 

  30. Brands AM, Biessels GJ, de Haan EH, Kappelle LJ, Kessels RP (2005) The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 28(3):726–735

    Article  PubMed  Google Scholar 

  31. Hsu CC, Wahlqvist ML, Lee MS, Tsai HN (2011) Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis 24(3):485–493

    CAS  PubMed  Google Scholar 

  32. Anderson RJ, Freedland KE, Clouse RE, Lustman PJ (2001) The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care 24(6):1069–1078

    Article  CAS  PubMed  Google Scholar 

  33. Lapidot A, Haber S (2002) Effect of endogenous beta-hydroxybutyrate on brain glucose metabolism in fetuses of diabetic rabbits, studied by 13C magnetic resonance spectroscopy. Brain Res Dev Brain Res 135(1–2):87–99

    Article  CAS  PubMed  Google Scholar 

  34. McCall AL (1992) The impact of diabetes on the CNS. Diabetes 41(5):557–570

    Article  CAS  PubMed  Google Scholar 

  35. Mastrocola R, Restivo F, Vercellinatto I, Danni O, Brignardello E, Aragno M, Boccuzzi G (2005) Oxidative and nitrosative stress in brain mitochondria of diabetic rats. J Endocrinol 187(1):37–44

    Article  CAS  PubMed  Google Scholar 

  36. Baslow MH (2002) Evidence supporting a role for N-acetyl-L-aspartate as a molecular water pump in myelinated neurons in the central nervous system. An analytical review. Neurochem Int 40(4):295–300

    Article  CAS  PubMed  Google Scholar 

  37. Mangia S, Kumar AF, Moheet AA, Roberts RJ, Eberly LE, Seaquist ER, Tkac I (2013) Neurochemical profile of patients with type 1 diabetes measured by 1H-MRS at 4 T. J Cereb Blood Flow Metab 33(5):754–759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Schweinsburg BC, Taylor MJ, Videen JS, Alhassoon OM, Patterson TL, Grant I (2000) Elevated myo-inositol in gray matter of recently detoxified but not long-term abstinent alcoholics: a preliminary MR spectroscopy study. Alcohol Clin Exp Res 24(5):699–705

    Article  CAS  PubMed  Google Scholar 

  39. Bramanti V, Tomassoni D, Avitabile M, Amenta F, Avola R (2010) Biomarkers of glial cell proliferation and differentiation in culture. Front Biosci (Schol Ed) 2:558–570

    Article  Google Scholar 

  40. Asnaghi V, Gerhardinger C, Hoehn T, Adeboje A, Lorenzi M (2003) A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes 52(2):506–511

    Article  CAS  PubMed  Google Scholar 

  41. Zwingmann C, Leibfritz D, Hazell AS (2004) Brain energy metabolism in a sub-acute rat model of manganese neurotoxicity: an ex vivo nuclear magnetic resonance study using [1-13C]glucose. Neurotoxicology 25(4):573–587

    Article  CAS  PubMed  Google Scholar 

  42. Marrif H, Juurlink BH (1999) Astrocytes respond to hypoxia by increasing glycolytic capacity. J Neurosci Res 57(2):255–260

    Article  CAS  PubMed  Google Scholar 

  43. Cerdan S, Kunnecke B, Seelig J (1990) Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR. J Biol Chem 265(22):12916–12926

    CAS  PubMed  Google Scholar 

  44. Serres S, Bezancon E, Franconi JM, Merle M (2007) Brain pyruvate recycling and peripheral metabolism: an NMR analysis ex vivo of acetate and glucose metabolism in the rat. J Neurochem 101(5):1428–1440

    Article  CAS  PubMed  Google Scholar 

  45. Desagher S, Glowinski J, Premont J (1997) Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J Neurosci 17(23):9060–9067

    CAS  PubMed  Google Scholar 

  46. Schurr A, Miller JJ, Payne RS, Rigor BM (1999) An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci 19(1):34–39

    CAS  PubMed  Google Scholar 

  47. Garcia-Espinosa MA, Garcia-Martin ML, Cerdan S (2003) Role of glial metabolism in diabetic encephalopathy as detected by high resolution 13C NMR. NMR Biomed 16(6–7):440–449

    Article  CAS  PubMed  Google Scholar 

  48. Sonnewald U, Kondziella D (2003) Neuronal glial interaction in different neurological diseases studied by ex vivo 13C NMR spectroscopy. NMR Biomed 16(6–7):424–429

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Huan Zhu and Jian-min Jia for their participation. This work was supported by the National Natural Science Foundation of China (No. 21175099), the Zhejiang Provincial Natural Science Foundation of China (No. LY14H090014), the Zhejiang Provincial Program for the Cultivation of Health talents, and the Science and Technology Foundation of Wenzhou (No. Y20100005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Jun Yang or Hong-Chang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Zhao, LC., Zheng, YQ. et al. Alteration of Interaction Between Astrocytes and Neurons in Different Stages of Diabetes: a Nuclear Magnetic Resonance Study Using [1-13C]Glucose and [2-13C]Acetate. Mol Neurobiol 51, 843–852 (2015). https://doi.org/10.1007/s12035-014-8808-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8808-4

Keywords

Navigation