Skip to main content

Advertisement

Log in

Human Pluripotent Stem Cell-Derived Retinal Pigmented Epithelium in Retinal Treatment: from Bench to Bedside

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The generation of retinal pigment epithelial (RPE) cells from pluripotent stem cells is a topic of interest over the past few years as dysfunctional RPE cells are a primary cause of ocular diseases. However, a number of obstacles need to be overcome before these cells can be used in clinical trials. This review aims to provide an overview of the latest reports on the generation of RPE cells from human pluripotent stem cells. Challenges that need to be addressed in future studies for their therapeutic applications are discussed. Proposed research goals for this fast growing field are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881

    Article  PubMed  CAS  Google Scholar 

  2. Fuhrmann S, Zou C, Levine EM (2013) Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res. doi:10.1016/j.exer.2013.09.003

    PubMed  Google Scholar 

  3. Chow RL, Lang RA (2001) Early eye development in vertebrates. Annu Rev Cell Dev Biol 17:255–296

    Article  PubMed  CAS  Google Scholar 

  4. Fuhrmann S (2010) Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol 93:61–84

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vinothkumar S, Rastegar S, Takamiya M, Ertzer R, Strahle U (2008) Sequential and cooperative action of Fgfs and Shh in the zebrafish retina. Dev Biol 314(1):200–214

    Article  PubMed  CAS  Google Scholar 

  6. Pittack C, Grunwald GB, Reh TA (1997) Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development 124(4):805–816

    PubMed  CAS  Google Scholar 

  7. Fuhrmann S, Levine EM, Reh TA (2000) Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development 127(21):4599–4609

    PubMed  CAS  Google Scholar 

  8. Fujimura N, Taketo MM, Mori M, Korinek V, Kozmik Z (2009) Spatial and temporal regulation of Wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium. Dev Biol 334(1):31–45

    Article  PubMed  CAS  Google Scholar 

  9. Nguyen M, Arnheiter H (2000) Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF. Development 127(16):3581–3591

    PubMed  CAS  Google Scholar 

  10. Bora N, Conway SJ, Liang H, Smith SB (1998) Transient overexpression of the Microphthalmia gene in the eyes of Microphthalmia vitiligo mutant mice. Dev Dyn 213(3):283–292

    Article  PubMed  CAS  Google Scholar 

  11. Liu IS, Chen JD, Ploder L, Vidgen D, van der Kooy D, Kalnins VI, McInnes RR (1994) Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 13(2):377–393

    Article  PubMed  CAS  Google Scholar 

  12. Martinez-Morales JR, Rodrigo I, Bovolenta P (2004) Eye development: a view from the retina pigmented epithelium. Bioessays 26(7):766–777

    Article  PubMed  CAS  Google Scholar 

  13. Hamann S (2002) Molecular mechanisms of water transport in the eye. Int Rev Cytol 215:395–431

    Article  PubMed  CAS  Google Scholar 

  14. Sugita S (2009) Role of ocular pigment epithelial cells in immune privilege. Arch Immunol Ther Exp 57(4):263–268

    Article  Google Scholar 

  15. Stein-Streilein J (2013) Mechanisms of immune privilege in the posterior eye. Int Rev Immunol 32(1):42–56

    Article  PubMed  CAS  Google Scholar 

  16. Kokkinaki M, Sahibzada N, Golestaneh N (2011) Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells 29(5):825–835

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Lamba DA, Reh TA (2011) Microarray characterization of human embryonic stem cell-derived retinal cultures. Invest Ophthalmol Vis Sci 52(7):4897–4906

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Zhang Z, Zhang Y, Xiao H, Liang X, Sun D, Peng S (2012) A gene expression profile of the developing human retinal pigment epithelium. Mol Vis 18:2961–2975

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita A, Kiryu J, Takahashi M (2014) Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep 2:1–14

    Article  CAS  Google Scholar 

  20. Liao JL, Yu J, Huang K, Hu J, Diemer T, Ma Z, Dvash T, Yang XJ, Travis GH, Williams DS, Bok D, Fan G (2010) Molecular signature of primary retinal pigment epithelium and stem-cell-derived RPE cells. Hum Mol Genet 19(21):4229–4238

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Hu G, Huang K, Yu J, Gopalakrishna-Pillai S, Kong J, Xu H, Liu Z, Zhang K, Xu J, Luo Y, Li S, Sun YE, Iverson LE, Xue Z, Fan G (2012) Identification of miRNA signatures during the differentiation of hESCs into retinal pigment epithelial cells. PLoS One 7(7):e37224

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Sonoda S, Spee C, Barron E, Ryan SJ, Kannan R, Hinton DR (2009) A protocol for the culture and differentiation of highly polarized human retinal pigment epithelial cells. Nat Protoc 4(5):662–673

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Maminishkis A, Chen S, Jalickee S, Banzon T, Shi G, Wang FE, Ehalt T, Hammer JA, Miller SS (2006) Confluent monolayers of cultured human fetal retinal pigment epithelium exhibit morphology and physiology of native tissue. Invest Ophthalmol Vis Sci 47(8):3612–3624

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379(9817):713–720

    Article  PubMed  CAS  Google Scholar 

  25. Opas M, Dziak E (1994) bFGF-induced transdifferentiation of RPE to neuronal progenitors is regulated by the mechanical properties of the substratum. Dev Biol 161(2):440–454

    Article  PubMed  CAS  Google Scholar 

  26. Baumer N, Marquardt T, Stoykova A, Spieler D, Treichel D, Ashery-Padan R, Gruss P (2003) Retinal pigmented epithelium determination requires the redundant activities of Pax2 and Pax6. Development 130(13):2903–2915

    Article  PubMed  CAS  Google Scholar 

  27. Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R (2004) Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 6(3):217–245

    Article  PubMed  CAS  Google Scholar 

  28. Carr AJ, Vugler A, Lawrence J, Chen LL, Ahmado A, Chen FK, Semo M, Gias C, da Cruz L, Moore HD, Walsh J, Coffey PJ (2009) Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol Vis 15:283–295

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, Girman S, Bischoff N, Sauve Y, Lanza R (2006) Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8(3):189–199

    Article  PubMed  CAS  Google Scholar 

  30. Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, Clegg DO (2009) Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 27(10):2427–2434

    Article  PubMed  CAS  Google Scholar 

  31. Torrez LB, Perez Y, Yang J, Zur Nieden NI, Klassen H, Liew CG (2012) Derivation of neural progenitors and retinal pigment epithelium from common marmoset and human pluripotent stem cells. Stem Cells Int 2012:417865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Harness JV, Turovets NA, Seiler MJ, Nistor G, Altun G, Agapova LS, Ferguson D, Laurent LC, Loring JF, Keirstead HS (2011) Equivalence of conventionally-derived and parthenote-derived human embryonic stem cells. PLoS One 6(1):e14499

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Vaajasaari H, Ilmarinen T, Juuti-Uusitalo K, Rajala K, Onnela N, Narkilahti S, Suuronen R, Hyttinen J, Uusitalo H, Skottman H (2011) Toward the defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells. Mol Vis 17:558–575

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, Buchholz DE, Ahmado A, Semo M, Smart MJ, Hasan S, da Cruz L, Johnson LV, Clegg DO, Coffey PJ (2009) Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One 4(12):e8152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Maruotti J, Wahlin K, Gorrell D, Bhutto I, Lutty G, Zack DJ (2013) A simple and scalable process for the differentiation of retinal pigment epithelium from human pluripotent stem cells. Stem Cells Transl Med 2(5):341–354

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, Haruta M, Takahashi M, Yoshikawa K, Nishikawa S, Nakatsuji N, Sasai Y (2002) Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci U S A 99(3):1580–1585

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Haruta M, Sasai Y, Kawasaki H, Amemiya K, Ooto S, Kitada M, Suemori H, Nakatsuji N, Ide C, Honda Y, Takahashi M (2004) In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest Ophthalmol Vis Sci 45(3):1020–1025

    Article  PubMed  Google Scholar 

  38. Okamoto S, Takahashi M (2011) Induction of retinal pigment epithelial cells from monkey iPS cells. Invest Ophthalmol Vis Sci 52(12):8785–8790

    Article  PubMed  CAS  Google Scholar 

  39. Ikeda H, Osakada F, Watanabe K, Mizuseki K, Haraguchi T, Miyoshi H, Kamiya D, Honda Y, Sasai N, Yoshimura N, Takahashi M, Sasai Y (2005) Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci U S A 102(32):11331–11336

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N, Akaike A, Sasai Y, Takahashi M (2008) Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26(2):215–224

    Article  PubMed  CAS  Google Scholar 

  41. Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M (2009) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122(Pt 17):3169–3179

    Article  PubMed  CAS  Google Scholar 

  42. Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, Yoshimura N, Takahashi M (2009) Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 458(3):126–131

    Article  PubMed  CAS  Google Scholar 

  43. Feng B, Ng JH, Heng JC, Ng HH (2009) Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 4(4):301–312

    Article  PubMed  CAS  Google Scholar 

  44. Yuan X, Li W, Ding S (2011) Small molecules in cellular reprogramming and differentiation. Prog Drug Res 67:253–266

    PubMed  CAS  Google Scholar 

  45. Li W, Ding S (2010) Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends Pharmacol Sci 31(1):36–45

    Article  PubMed  CAS  Google Scholar 

  46. Efe JA, Ding S (2011) The evolving biology of small molecules: controlling cell fate and identity. Philos Trans R Soc Lond B Biol Sci 366(1575):2208–2221

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Lyssiotis CA, Lairson LL, Boitano AE, Wurdak H, Zhu S, Schultz PG (2011) Chemical control of stem cell fate and developmental potential. Angew Chem Int Ed Engl 50(1):200–242

    Article  PubMed  CAS  Google Scholar 

  48. Zhang Y, Li W, Laurent T, Ding S (2012) Small molecules, big roles—the chemical manipulation of stem cell fate and somatic cell reprogramming. J Cell Sci 125(Pt 23):5609–5620

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H, Smith Y, Wiser O, Gropp M, Cohen MA, Even-Ram S, Berman-Zaken Y, Matzrafi L, Rechavi G, Banin E, Reubinoff B (2009) Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5(4):396–408

    Article  PubMed  CAS  Google Scholar 

  50. Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang SC, Gamm DM (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A 106(39):16698–16703

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Park UC, Cho MS, Park JH, Kim SJ, Ku SY, Choi YM, Moon SY, Yu HG (2011) Subretinal transplantation of putative retinal pigment epithelial cells derived from human embryonic stem cells in rat retinal degeneration model. Clin Exp Reprod Med 38(4):216–221

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zahabi A, Shahbazi E, Ahmadieh H, Hassani SN, Totonchi M, Taei A, Masoudi N, Ebrahimi M, Aghdami N, Seifinejad A, Mehrnejad F, Daftarian N, Salekdeh GH, Baharvand H (2012) A new efficient protocol for directed differentiation of retinal pigmented epithelial cells from normal and retinal disease induced pluripotent stem cells. Stem Cells Dev 21(12):2262–2272

    Article  PubMed  CAS  Google Scholar 

  53. Cho MS, Kim SJ, Ku SY, Park JH, Lee H, Yoo DH, Park UC, Song SA, Choi YM, Yu HG (2012) Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses. Stem Cell Res 9(2):101–109

    Article  PubMed  CAS  Google Scholar 

  54. Buchholz DE, Pennington BO, Croze RH, Hinman CR, Coffey PJ, Clegg DO (2013) Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Transl Med 2(5):384–393

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Gong J, Sagiv O, Cai H, Tsang SH, Del Priore LV (2008) Effects of extracellular matrix and neighboring cells on induction of human embryonic stem cells into retinal or retinal pigment epithelial progenitors. Exp Eye Res 86(6):957–965

    Article  PubMed  CAS  Google Scholar 

  56. Rowland TJ, Blaschke AJ, Buchholz DE, Hikita ST, Johnson LV, Clegg DO (2013) Differentiation of human pluripotent stem cells to retinal pigmented epithelium in defined conditions using purified extracellular matrix proteins. J Tissue Eng Regen Med 7(8):642–653

    Article  PubMed  CAS  Google Scholar 

  57. Sorkio A, Hongisto H, Kaarniranta K, Uusitalo H, Juuti-Uusitalo K, Skottman H (2014) Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating. Tissue Eng Part A 20(3–4):622–634

    PubMed  CAS  Google Scholar 

  58. Sasai Y (2013) Cytosystems dynamics in self-organization of tissue architecture. Nature 493(7432):318–326

    Article  PubMed  CAS  Google Scholar 

  59. Sasai Y (2013) Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12(5):520–530

    Article  PubMed  CAS  Google Scholar 

  60. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472(7341):51–56

    Article  PubMed  CAS  Google Scholar 

  61. Meyer JS, Howden SE, Wallace KA, Verhoeven AD, Wright LS, Capowski EE, Pinilla I, Martin JM, Tian S, Stewart R, Pattnaik B, Thomson JA, Gamm DM (2011) Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29(8):1206–1218

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10(6):771–785

    Article  PubMed  CAS  Google Scholar 

  63. Zhu Y, Carido M, Meinhardt A, Kurth T, Karl MO, Ader M, Tanaka EM (2013) Three-dimensional neuroepithelial culture from human embryonic stem cells and its use for quantitative conversion to retinal pigment epithelium. PLoS One 8(1):e54552

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Zhu Z, Huangfu D (2013) Human pluripotent stem cells: an emerging model in developmental biology. Development 140(4):705–717

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Rizzolo LJ (2007) Development and role of tight junctions in the retinal pigment epithelium. Int Rev Cytol 258:195–234

    Article  PubMed  CAS  Google Scholar 

  66. Jin ZB, Okamoto S, Osakada F, Homma K, Assawachananont J, Hirami Y, Iwata T, Takahashi M (2011) Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS One 6(2):e17084

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Arnault E, Barrau C, Nanteau C, Gondouin P, Bigot K, Vienot F, Gutman E, Fontaine V, Villette T, Cohen-Tannoudji D, Sahel JA, Picaud S (2013) Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions. PLoS One 8(8):e71398

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Juuti-Uusitalo K, Vaajasaari H, Ryhanen T, Narkilahti S, Suuronen R, Mannermaa E, Kaarniranta K, Skottman H (2012) Efflux protein expression in human stem cell-derived retinal pigment epithelial cells. PLoS One 7(1):e30089

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Luo Y, Zhuo Y, Fukuhara M, Rizzolo LJ (2006) Effects of culture conditions on heterogeneity and the apical junctional complex of the ARPE-19 cell line. Invest Ophthalmol Vis Sci 47(8):3644–3655

    Article  PubMed  Google Scholar 

  70. Brar VS, Sharma RK, Murthy RK, Chalam KV (2009) Evaluation of differential toxicity of varying doses of bevacizumab on retinal ganglion cells, retinal pigment epithelial cells, and vascular endothelial growth factor-enriched choroidal endothelial cells. J Ocul Pharmacol Ther: Off J Assoc Ocul Pharmacol Ther 25(6):507–511

    Article  CAS  Google Scholar 

  71. Vugler A, Carr AJ, Lawrence J, Chen LL, Burrell K, Wright A, Lundh P, Semo M, Ahmado A, Gias C, da Cruz L, Moore H, Andrews P, Walsh J, Coffey P (2008) Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol 214(2):347–361

    Article  PubMed  CAS  Google Scholar 

  72. Li Y, Tsai YT, Hsu CW, Erol D, Yang J, Wu WH, Davis RJ, Egli D, Tsang SH (2012) Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med 18:1312–1319

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Kanemura H, Go MJ, Shikamura M, Nishishita N, Sakai N, Kamao H, Mandai M, Morinaga C, Takahashi M, Kawamata S (2014) Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PLoS One 9(1):e85336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Cyranoski D (2013) Stem cells cruise to clinic. Nature 494(7438):413

    Article  PubMed  CAS  Google Scholar 

  75. Ramkumar HL, Zhang J, Chan CC (2010) Retinal ultrastructure of murine models of dry age-related macular degeneration (AMD). Prog Retin Eye Res 29(3):169–190

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Pennesi ME, Neuringer M, Courtney RJ (2012) Animal models of age related macular degeneration. Mol Asp Med 33(4):487–509

    Article  CAS  Google Scholar 

  77. Umeda S, Ayyagari R, Allikmets R, Suzuki MT, Karoukis AJ, Ambasudhan R, Zernant J, Okamoto H, Ono F, Terao K, Mizota A, Yoshikawa Y, Tanaka Y, Iwata T (2005) Early-onset macular degeneration with drusen in a cynomolgus monkey (Macaca fascicularis) pedigree: exclusion of 13 candidate genes and loci. Invest Ophthalmol Vis Sci 46(2):683–691

    Article  PubMed  Google Scholar 

  78. Shepherd FA, Sridhar SS (2003) Angiogenesis inhibitors under study for the treatment of lung cancer. Lung Cancer 41(Suppl 1):S63–S72

    Article  PubMed  Google Scholar 

  79. Panitch HS, Hirsch RL, Haley AS, Johnson KP (1987) Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1(8538):893–895

    Article  PubMed  CAS  Google Scholar 

  80. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321(5889):699–702

    Article  PubMed  CAS  Google Scholar 

  81. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, Brugman MH, Pike-Overzet K, Chatters SJ, de Ridder D, Gilmour KC, Adams S, Thornhill SI, Parsley KL, Staal FJ, Gale RE, Linch DC, Bayford J, Brown L, Quaye M, Kinnon C, Ancliff P, Webb DK, Schmidt M, von Kalle C, Gaspar HB, Thrasher AJ (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118(9):3143–3150

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Meng F, Chen S, Miao Q, Zhou K, Lao Q, Zhang X, Guo W, Jiao J (2012) Induction of fibroblasts to neurons through adenoviral gene delivery. Cell Res 22(2):436–440

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Adler AF, Grigsby CL, Kulangara K, Wang H, Yasuda R, Leong KW (2012) Nonviral direct conversion of primary mouse embryonic fibroblasts to neuronal cells. Mol Ther Nucleic Acids 1:e32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Yoshioka N, Gros E, Li HR, Kumar S, Deacon DC, Maron C, Muotri AR, Chi NC, Fu XD, Yu BD, Dowdy SF (2013) Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell 13(2):246–254

    Article  PubMed  CAS  Google Scholar 

  85. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Zhu S, Wei W, Ding S (2011) Chemical strategies for stem cell biology and regenerative medicine. Annu Rev Biomed Eng 13:73–90

    Article  PubMed  CAS  Google Scholar 

  87. Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341(6146):651–654

    Article  PubMed  CAS  Google Scholar 

  88. Nguyen HT, Geens M, Spits C (2013) Genetic and epigenetic instability in human pluripotent stem cells. Hum Reprod Update 19(2):187–205

    Article  PubMed  CAS  Google Scholar 

  89. Lund RJ, Narva E, Lahesmaa R (2012) Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet 13(10):732–744

    Article  PubMed  CAS  Google Scholar 

  90. Wutz A (2012) Epigenetic alterations in human pluripotent stem cells: a tale of two cultures. Cell Stem Cell 11(1):9–15

    Article  PubMed  CAS  Google Scholar 

  91. Ruiz S, Diep D, Gore A, Panopoulos AD, Montserrat N, Plongthongkum N, Kumar S, Fung HL, Giorgetti A, Bilic J, Batchelder EM, Zaehres H, Kan NG, Scholer HR, Mercola M, Zhang K, Izpisua Belmonte JC (2012) Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc Natl Acad Sci U S A 109(40):16196–16201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Marchetto MC, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR (2009) Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One 4(9):e7076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P, Lee H, Aryee MJ, Irizarry RA, Kim K, Rossi DJ, Inlay MA, Serwold T, Karsunky H, Ho L, Daley GQ, Weissman IL, Feinberg AP (2010) Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467(7313):338–342

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O'Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Kiuru M, Boyer JL, O'Connor TP, Crystal RG (2009) Genetic control of wayward pluripotent stem cells and their progeny after transplantation. Cell Stem Cell 4(4):289–300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Knoepfler PS (2009) Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 27(5):1050–1056

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Lowry WE, Quan WL (2010) Roadblocks en route to the clinical application of induced pluripotent stem cells. J Cell Sci 123(Pt 5):643–651

    Article  PubMed  CAS  Google Scholar 

  99. Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, Lanza R, Lund R (2009) Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 27(9):2126–2135

    Article  PubMed  CAS  Google Scholar 

  100. Sridhar A, Steward MM, Meyer JS (2013) Nonxenogeneic growth and retinal differentiation of human induced pluripotent stem cells. Stem Cells Transl Med 2(4):255–264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  101. Cyranoski D (2008) Stem cells: 5 things to know before jumping on the iPS bandwagon. Nature 452(7186):406–408

    Article  PubMed  CAS  Google Scholar 

  102. Mercola M, Colas A, Willems E (2013) Induced pluripotent stem cells in cardiovascular drug discovery. Circ Res 112(3):534–548

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  103. Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, Ikeda E, Yamanaka S, Miura K (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112(3):523–533

    Article  PubMed  CAS  Google Scholar 

  104. Stadtfeld M, Hochedlinger K (2010) Induced pluripotency: history, mechanisms, and applications. Genes Dev 24(20):2239–2263

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  105. Tavernier G, Mlody B, Demeester J, Adjaye J, De Smedt SC (2013) Current methods for inducing pluripotency in somatic cells. Adv Mater 25(20):2765–2771

    Article  PubMed  CAS  Google Scholar 

  106. Obokata H, Wakayama T, Sasai Y, Kojima K, Vacanti MP, Niwa H, Yamato M, Vacanti CA (2014) Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature 505(7485):641–647

    Article  PubMed  CAS  Google Scholar 

  107. Obokata H, Sasai Y, Niwa H, Kadota M, Andrabi M, Takata N, Tokoro M, Terashita Y, Yonemura S, Vacanti CA, Wakayama T (2014) Bidirectional developmental potential in reprogrammed cells with acquired pluripotency. Nature 505(7485):676–680

    Article  PubMed  CAS  Google Scholar 

  108. de Almeida PE, Ransohoff JD, Nahid A, Wu JC (2013) Immunogenicity of pluripotent stem cells and their derivatives. Circ Res 112(3):549–561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–215

    Article  PubMed  CAS  Google Scholar 

  110. Araki R, Uda M, Hoki Y, Sunayama M, Nakamura M, Ando S, Sugiura M, Ideno H, Shimada A, Nifuji A, Abe M (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494(7435):100–104

    Article  PubMed  CAS  Google Scholar 

  111. Guha P, Morgan JW, Mostoslavsky G, Rodrigues NP, Boyd AS (2013) Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell 12(4):407–412

    Article  PubMed  CAS  Google Scholar 

  112. Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee HS, Sritanaudomchai H, Masterson K, Larson J, Eaton D, Sadler-Fredd K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer RL, Wolf D, Mitalipov S (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153(6):1228–1238

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Rong Z, Wang M, Hu Z, Stradner M, Zhu S, Kong H, Yi H, Goldrath A, Yang YG, Xu Y, Fu X (2014) An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell 14(1):121–130

    Article  PubMed  CAS  Google Scholar 

  114. Del Priore LV, Tezel TH (1998) Reattachment rate of human retinal pigment epithelium to layers of human Bruch's membrane. Arch Ophthalmol 116(3):335–341

    Article  PubMed  Google Scholar 

  115. Binder S, Stanzel BV, Krebs I, Glittenberg C (2007) Transplantation of the RPE in AMD. Prog Retin Eye Res 26(5):516–554

    Article  PubMed  Google Scholar 

  116. Sheridan C, Williams R, Grierson I (2004) Basement membranes and artificial substrates in cell transplantation. Graefes Arch Clin Exp Ophthalmol Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 242(1):68–75

    Article  Google Scholar 

  117. Sheng Y, Gouras P, Cao H, Berglin L, Kjeldbye H, Lopez R, Rosskothen H (1995) Patch transplants of human fetal retinal pigment epithelium in rabbit and monkey retina. Invest Ophthalmol Vis Sci 36(2):381–390

    PubMed  CAS  Google Scholar 

  118. Del Priore LV, Tezel TH, Kaplan HJ (2004) Survival of allogeneic porcine retinal pigment epithelial sheets after subretinal transplantation. Invest Ophthalmol Vis Sci 45(3):985–992

    Article  PubMed  Google Scholar 

  119. Shen D, Wen R, Tuo J, Bojanowski CM, Chan CC (2006) Exacerbation of retinal degeneration and choroidal neovascularization induced by subretinal injection of Matrigel in CCL2/MCP-1-deficient mice. Ophthalmic Res 38(2):71–73

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  120. Lu L, Garcia CA, Mikos AG (1998) Retinal pigment epithelium cell culture on thin biodegradable poly(DL-lactic-co-glycolic acid) films. J Biomater Sci Polym Ed 9(11):1187–1205

    Article  PubMed  CAS  Google Scholar 

  121. Treharne AJ, Grossel MC, Lotery AJ, Thomson HA (2011) The chemistry of retinal transplantation: the influence of polymer scaffold properties on retinal cell adhesion and control. Br J Ophthalmol 95(6):768–773

    Article  PubMed  Google Scholar 

  122. Lu B, Zhu D, Hinton D, Humayun MS, Tai YC (2012) Mesh-supported submicron parylene-C membranes for culturing retinal pigment epithelial cells. Biomed Microdevices 14(4):659–667

    Article  PubMed  CAS  Google Scholar 

  123. Diniz B, Thomas P, Thomas B, Ribeiro R, Hu Y, Brant R, Ahuja A, Zhu D, Liu L, Koss M, Maia M, Chader G, Hinton DR, Humayun MS (2013) Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci 54(7):5087–5096

    Article  PubMed  PubMed Central  Google Scholar 

  124. Han L, Ma Z, Wang C, Dou H, Hu Y, Feng X, Xu Y, Yin Z, Wang X (2013) Autologous transplantation of simple retinal pigment epithelium sheet for massive submacular hemorrhage associated with pigment epithelium detachment. Invest Ophthalmol Vis Sci 54(7):4956–4963

    Article  PubMed  Google Scholar 

  125. Woodford C, Zandstra PW (2012) Tissue engineering 2.0: guiding self-organization during pluripotent stem cell differentiation. Curr Opin Biotechnol 23(5):810–819

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  126. Pournasr B, Khaloughi K, Salekdeh GH, Totonchi M, Shahbazi E, Baharvand H (2011) Concise review: alchemy of biology: generating desired cell types from abundant and accessible cells. Stem Cells 29(12):1933–1941

    Article  PubMed  CAS  Google Scholar 

  127. Sancho-Martinez I, Baek SH, Izpisua Belmonte JC (2012) Lineage conversion methodologies meet the reprogramming toolbox. Nat Cell Biol 14(9):892–899

    Article  PubMed  CAS  Google Scholar 

  128. Graf T (2011) Historical origins of transdifferentiation and reprogramming. Cell Stem Cell 9(6):504–516

    Article  PubMed  CAS  Google Scholar 

  129. Vierbuchen T, Wernig M (2011) Direct lineage conversions: unnatural but useful? Nat Biotechnol 29(10):892–907

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  130. Lujan E, Wernig M (2012) The many roads to Rome: induction of neural precursor cells from fibroblasts. Curr Opin Genet Dev 22(5):517–522

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  131. Abdullah AI, Pollock A, Sun T (2012) The path from skin to brain: generation of functional neurons from fibroblasts. Mol Neurobiol 45(3):586–595

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  132. Mirakhori F, Zeynali B, Salekdeh GH, Baharvand H (2013) Induced neural lineage cells as repair kits: close, but yet so far away. J Cell Physiol. doi:10.1002/jcp.24509

    Google Scholar 

  133. Fischer AJ, Bongini R (2010) Turning Muller glia into neural progenitors in the retina. Mol Neurobiol 42(3):199–209

    Article  PubMed  CAS  Google Scholar 

  134. Filoni S (2009) Retina and lens regeneration in anuran amphibians. Semin Cell Dev Biol 20(5):528–534

    Article  PubMed  Google Scholar 

  135. Zhang K, Liu GH, Yi F, Montserrat N, Hishida T, Rodriguez Esteban C, Izpisua Belmonte JC (2014) Direct conversion of human fibroblasts into retinal pigment epithelium-like cells by defined factors. Protein Cell 5:48–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Juuti-Uusitalo K, Delporte C, Gregoire F, Perret J, Huhtala H, Savolainen V, Nymark S, Hyttinen J, Uusitalo H, Willermain F, Skottman H (2013) Aquaporin expression and function in human pluripotent stem cell-derived retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 54(5):3510–3519

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Miss Fatemeh Safari and Miss Razieh Karamzadeh for preparing the figures. We also thank Dr. Hamid Ahmadieh for photographs of AMD. We apologize to all authors whose works have not been included or adequately discussed because of space limitations. This work was supported by Royan Institute.

Conflict of Interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Baharvand.

Additional information

Maryam Parvini and Leila Satarian contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvini, M., Satarian, L., Parivar, K. et al. Human Pluripotent Stem Cell-Derived Retinal Pigmented Epithelium in Retinal Treatment: from Bench to Bedside. Mol Neurobiol 50, 597–612 (2014). https://doi.org/10.1007/s12035-014-8684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8684-y

Keywords

Navigation