Skip to main content
Log in

Involvement of Volume-Activated Chloride Channels in H2O2 Preconditioning Against Oxidant-Induced Injury Through Modulating Cell Volume Regulation Mechanisms and Membrane Permeability in PC12 Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The functions of chloride channels in preconditioning-induced cell protection remain unclear. In this report, we show that the volume-activated chloride channels play a key role in hydrogen peroxide (H2O2) preconditioning-induced cell protection in pheochromocytoma PC12 cells. The preconditioning with 100 μM H2O2 for 90 min protected the cells from injury induced by long period exposure to 300 μM H2O2. The protective effect was attenuated by pretreatment with the chloride channel blockers, 5-nitro-2-3-phenylpropylamino benzoic acid (NPPB) and tamoxifen. H2O2 preconditioning directly activated a chloride current, which was moderately outward-rectified and sensitive to the chloride channel blockers and hypertonicity-induced cell shrinkage. H2O2 preconditioning functionally up-regulated the activities of volume-activated chloride channels and enhanced the regulatory volume decrease when exposure to extracellular hypotonic challenges. In addition, acute application of H2O2 showed distinctive actions on cell volume and membrane permeability in H2O2 preconditioned cells. In H2O2 preconditioned cells, acute application of 300 μM H2O2 first promptly induced a decrease of cell volume and enhancement of cell membrane permeability, and then, cell volume was maintained at a relatively stable level and the facilitation of membrane permeability was reduced. Conversely, in control cells, 300 μM H2O2 induced a slow but persistent apoptotic volume decrease (AVD) and facilitation of membrane permeability. H2O2 preconditioning also significantly up-regulated the expression of ClC-3 protein, the molecular candidate of the volume-activated chloride channel. These results suggest that H2O2 preconditioning can enhance the expression and functional activities of volume-activated chloride channels, thereby modulate cell volume and cell membrane permeability, which may contribute to neuroprotection against oxidant-induced injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abu-Absi NR, Srienc F (2000) Cell cycle events and cell cycledependent processes. In: Spier RE (ed) Encyclopedia of Cell Technology, vol 1. Wiley, New York, pp 320–336

    Google Scholar 

  2. Angeloni C, Motori E, Fabbri D, Malaguti M, Leoncini E, Lorenzini A, Hrelia S (2011) H2O2 preconditioning modulates phase II enzymes through p38 MAPK and PI3K/Akt activation. Am J Physiol Heart Circ Physiol 300:H2196–2205

    Article  PubMed  CAS  Google Scholar 

  3. Batthish M, Diaz RJ, Zeng HP, Backx PH, Wilson GJ (2002) Pharmacological preconditioning in rabbit myocardium is blocked by chloride channel inhibition. Cardiovasc Res 55:660–671

    Article  PubMed  CAS  Google Scholar 

  4. Chen L, Wang L, Zhu L, Nie S, Zhang J, Zhong P, Cai B, Luo H, Jacob TJ (2002) Cell cycle-dependent expression of volume-activated chloride currents in nasopharyngeal carcinoma cells. Am J Physiol Cell Physiol 283:C1313–1323

    Article  PubMed  CAS  Google Scholar 

  5. Diaz RJ, Armstrong SC, Batthish M, Backx PH, Ganote CE, Wilson GJ (2003) Enhanced cell volume regulation: a key protective mechanism of ischemic preconditioning in rabbit ventricular myocytes. J Mol Cell Cardiol 35:45–58

    Article  PubMed  CAS  Google Scholar 

  6. Diaz RJ, Hinek A, Wilson GJ (2010) Direct evidence of chloride ion efflux in ischaemic and pharmacological preconditioning of cultured cardiomyocytes. Cardiovasc Res 87:545–551

    Article  PubMed  CAS  Google Scholar 

  7. Diaz RJ, Losito VA, Mao GD, Ford MK, Backx PH, Wilson GJ (1999) Chloride channel inhibition blocks the protection of ischemic preconditioning and hypo-osmotic stress in rabbit ventricular myocardium. Circ Res 84:763–775

    Article  PubMed  CAS  Google Scholar 

  8. Diaz RJ, Zobel C, Cho HC, Batthish M, Hinek A, Backx PH, Wilson GJ (2004) Selective inhibition of inward rectifier K+ channels (Kir2.1 or Kir2.2) abolishes protection by ischemic preconditioning in rabbit ventricular cardiomyocytes. Circ Res 95:325–332

    Article  PubMed  CAS  Google Scholar 

  9. Duan DD (2011) The ClC-3 chloride channels in cardiovascular disease. Acta Pharmacol Sin 32:675–684

    Article  PubMed  CAS  Google Scholar 

  10. Gaspar T, Snipes JA, Busija AR, Kis B, Domoki F, Bari F, Busija DW (2008) ROS-independent preconditioning in neurons via activation of mitoK(ATP) channels by BMS-191095. J Cereb Blood Flow Metab 28:1090–1103

    Article  PubMed  CAS  Google Scholar 

  11. Gonzalez G, Zaldivar D, Carrillo E, Hernandez A, Garcia M, Sanchez J (2010) Pharmacological preconditioning by diazoxide downregulates cardiac l-type Ca(2+) channels. Br J Pharmacol 161:1172–1185

    Article  PubMed  CAS  Google Scholar 

  12. Habela CW, Olsen ML, Sontheimer H (2008) ClC3 is a critical regulator of the cell cycle in normal and malignant glial cells. J Neurosci 28:9205–9217

    Article  PubMed  CAS  Google Scholar 

  13. Heusch G, Cohen MV, Downey JM (2001) Ischemic preconditioning through opening of swelling-activated chloride channels? Circ Res 89:E48

    PubMed  CAS  Google Scholar 

  14. Heusch G, Liu GS, Rose J, Cohen MV, Downey JM (2000) No confirmation for a causal role of volume-regulated chloride channels in ischemic preconditioning in rabbits. J Mol Cell Cardiol 32:2279–2285

    Article  PubMed  CAS  Google Scholar 

  15. Hume JR, Wang GX, Yamazaki J, Ng LC, Duan D (2010) CLC-3 chloride channels in the pulmonary vasculature. Adv Exp Med Biol 661:237–247

    Article  PubMed  CAS  Google Scholar 

  16. Lang F, Foller M, Lang K, Lang P, Ritter M, Vereninov A, Szabo I, Huber SM, Gulbins E (2007) Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol 428:209–225

    Article  PubMed  Google Scholar 

  17. Lin JH, Lou N, Kang N, Takano T, Hu F, Han X, Xu Q, Lovatt D, Torres A, Willecke K, Yang J, Kang J, Nedergaard M (2008) A central role of connexin 43 in hypoxic preconditioning. J Neurosci 28:681–695

    Article  PubMed  CAS  Google Scholar 

  18. Liu Y, Kalogeris T, Wang M, Zuidema MY, Wang Q, Dai H, Davis MJ, Hill MA, Korthuis RJ (2012) Hydrogen sulfide preconditioning or neutrophil depletion attenuates ischemia-reperfusion-induced mitochondrial dysfunction in rat small intestine. Am J Physiol Gastrointest Liver Physiol 302:G44–54

    Article  PubMed  CAS  Google Scholar 

  19. Maeno E, Shimizu T, Okada Y (2006) Normotonic cell shrinkage induces apoptosis under extracellular low Cl conditions in human lymphoid and epithelial cells. Acta Physiol (Oxf) 187:217–222

    Article  CAS  Google Scholar 

  20. Mao J, Li X, Chen W, Xu B, Zhang H, Li H, Wang L, Jin X, Zhu J, Lin G, Wang W, Chen L (2012) Cell cycle-dependent subcellular distribution of ClC-3 in HeLa cells. Histochem Cell Biol 137:763–776

    Article  PubMed  CAS  Google Scholar 

  21. Murillo D, Kamga C, Mo L, Shiva S (2011) Nitrite as a mediator of ischemic preconditioning and cytoprotection. Nitric Oxide 25:70–80

    Article  PubMed  CAS  Google Scholar 

  22. Nilius B (2001) Chloride channels go cell cycling. J Physiol 532:581

    Article  PubMed  CAS  Google Scholar 

  23. Okada Y, Sato K, Numata T (2009) Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J Physiol 587:2141–2149

    PubMed  CAS  Google Scholar 

  24. Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nature protocols 1:1458–1461

    Article  PubMed  CAS  Google Scholar 

  25. Ruscher K, Isaev N, Trendelenburg G, Weih M, Iurato L, Meisel A, Dirnagl U (1998) Induction of hypoxia inducible factor 1 by oxygen glucose deprivation is attenuated by hypoxic preconditioning in rat cultured neurons. Neurosci Lett 254:117–120

    Article  PubMed  CAS  Google Scholar 

  26. Salazar G, Love R, Styers ML, Werner E, Peden A, Rodriguez S, Gearing M, Wainer BH, Faundez V (2004) AP-3-dependent mechanisms control the targeting of a chloride channel (ClC-3) in neuronal and non-neuronal cells. J Biol Chem 279:25430–25439

    Article  PubMed  CAS  Google Scholar 

  27. Sharma A, Singh M (2001) Protein kinase C activation and cardioprotective effect of preconditioning with oxidative stress in isolated rat heart. Mol Cell Biochem 219:1–6

    Article  PubMed  CAS  Google Scholar 

  28. Shimizu T, Numata T, Okada Y (2004) A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl(−) channel. Proc Natl Acad Sci U S A 101:6770–6773

    Article  PubMed  CAS  Google Scholar 

  29. Tang XQ, Feng JQ, Chen J, Chen PX, Zhi JL, Cui Y, Guo RX, Yu HM (2005) Protection of oxidative preconditioning against apoptosis induced by H2O2 in PC12 cells: mechanisms via MMP, ROS, and Bcl-2. Brain Res 1057:57–64

    Article  PubMed  CAS  Google Scholar 

  30. Tang XQ, Yu HM, Zhi JL, Cui Y, Tang EH, Feng JQ, Chen PX (2006) Inducible nitric oxide synthase and cyclooxgenase-2 mediate protection of hydrogen peroxide preconditioning against apoptosis induced by oxidative stress in PC12 cells. Life Sci 79:870–876

    Article  PubMed  CAS  Google Scholar 

  31. Varela D, Simon F, Olivero P, Armisen R, Leiva-Salcedo E, Jorgensen F, Sala F, Stutzin A (2007) Activation of H2O2-induced VSOR Cl currents in HTC cells require phospholipase Cgamma1 phosphorylation and Ca2+ mobilisation. Cell Physiol Biochem 20:773–780

    Article  PubMed  CAS  Google Scholar 

  32. Wang L, Chen L, Zhu L, Rawle M, Nie S, Zhang J, Ping Z, Kangrong C, Jacob TJ (2002) Regulatory volume decrease is actively modulated during the cell cycle. J Cell Physiol 193:110–119

    Article  PubMed  CAS  Google Scholar 

  33. Wang L, Ma W, Zhu L, Ye D, Li Y, Liu S, Li H, Zuo W, Li B, Ye W, Chen L (2012) ClC-3 is a candidate of the channel proteins mediating acid-activated chloride currents in nasopharyngeal carcinoma cells. Am J Physiol Cell Physiol 303:C14–23

    Article  PubMed  CAS  Google Scholar 

  34. Watanabe M, Katsura K, Ohsawa I, Mizukoshi G, Takahashi K, Asoh S, Ohta S, Katayama Y (2008) Involvement of mitoKATP channel in protective mechanisms of cerebral ischemic tolerance. Brain Res 1238:199–207

    Article  PubMed  CAS  Google Scholar 

  35. Weerateerangkul P, Chattipakorn S, Chattipakorn N (2011) Roles of the nitric oxide signaling pathway in cardiac ischemic preconditioning against myocardial ischemia–reperfusion injury. Med Sci Monit 17:RA44–52

    Article  PubMed  CAS  Google Scholar 

  36. Yu HM, Zhi JL, Cui Y, Tang EH, Sun SN, Feng JQ, Chen PX (2006) Role of the JAK-STAT pathway in protection of hydrogen peroxide preconditioning against apoptosis induced by oxidative stress in PC12 cells. Apoptosis 11:931–941

    Article  PubMed  CAS  Google Scholar 

  37. Zhang HN, Zhou JG, Qiu QY, Ren JL, Guan YY (2006) ClC-3 chloride channel prevents apoptosis induced by thapsigargin in PC12 cells. Apoptosis 11:327–336

    Article  PubMed  CAS  Google Scholar 

  38. Zhang M, Guo RX, Mo LQ, Liao XX, Li W, Zhi JL, Sun SN, Wang YL, Cui Y, Liu W, Feng JQ, Chen PX (2009) Nuclear factor-kappaB mediates cytoprotection of hydrogen peroxide preconditioning against apoptosis induced by oxidative stress in PC12 cells. Clin Exp Pharmacol Physiol 36:304–311

    Article  PubMed  CAS  Google Scholar 

  39. Zhu L, Yang H, Zuo W, Yang L, Zhang H, Ye W, Mao J, Chen L, Wang L (2012) Differential expression and roles of volume-activated chloride channels in control of growth of normal and cancerous nasopharyngeal epithelial cells. Biochem Pharmacol 83:324–334

    Article  PubMed  CAS  Google Scholar 

  40. Zuo W, Zhu L, Bai Z, Zhang H, Mao J, Chen L, Wang L (2009) Chloride channels involve in hydrogen peroxide-induced apoptosis of PC12 cells. Biochem Biophys Res Commun 387:666–670

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31070997, 30771106, 30870567, 30871267, 81173064, 81272223, 81273539) and by the Natural Science Foundation of Guangdong Province (S2011010001589).

Conflicts of interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lixin Chen or Liwei Wang.

Additional information

Linyan Zhu and Wanhong Zuo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, L., Zuo, W., Yang, H. et al. Involvement of Volume-Activated Chloride Channels in H2O2 Preconditioning Against Oxidant-Induced Injury Through Modulating Cell Volume Regulation Mechanisms and Membrane Permeability in PC12 Cells. Mol Neurobiol 48, 205–216 (2013). https://doi.org/10.1007/s12035-013-8431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8431-9

Keywords

Navigation