Skip to main content

Advertisement

Log in

Exome Sequencing Identified NRG3 as a Novel Susceptible Gene of Hirschsprung’s Disease in a Chinese Population

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hirschsprung’s disease (HSCR) is a complex developmental defect characterized by the absence of enteric ganglia in the gastrointestinal tract. Although the genetic defect of enteric nervous system (ENS) was identified to play a critical role in the progress of HSCR, the systemic genetic dissection of HSCR still needs to be clarified. In this study, we firstly performed exome sequencing of two HSCR patients from a Han Chinese family, including the affected mother and son. After the initial quality filtering (coverage ≥ 5X and SNP quality score ≥ 40) of the raw data, we identified 13,948 and 13,856 single nucleotide variants (SNVs), respectively. We subsequently compared the SNVs against public databases (dbSNP130, HapMap, and 1000 Genome Project) and obtained a total of 15 novel nonsynonymous SNVs in 15 genes, which were shared between these two patients. Follow-up Sanger sequencing and bioinformatics analysis highlighted variant c.853G>A (p.E285K) in NRG3, a gene involved in the development of ENS. In the validation phase, we sequenced all nine exons of NRG3 in 96 additional sporadic HSCR cases and 110 healthy individuals and identified another nonsynonymous variant c.1329G>A (p.M443I) and two synonymous variants c.828G>A (p.T276T) and c.1365T>A (p.P455P) only in the cases. Our results indicated that NRG3 may be a susceptibility gene for HSCR in a Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Iwashita T, Kruger GM, Pardal R, Kiel MJ, Morrison SJ (2003) Hirschsprung disease is linked to defects in neural crest stem cell function. Science 301(5635):972–976

    Article  PubMed  CAS  Google Scholar 

  2. Kenny SE, Tam PK, Garcia-Barcelo M (2010) Hirschsprung’s disease. Semin Pediatr Surg 19(3):194–200

    Article  PubMed  Google Scholar 

  3. Amiel J, Sproat-Emison E, Garcia-Barcelo M, Lantieri F, Burzynski G, Borrego S, Pelet A, Arnold S, Miao X, Griseri P, Brooks AS, Antinolo G, de Pontual L, Clement-Ziza M, Munnich A, Kashuk C, West K, Wong KK, Lyonnet S, Chakravarti A, Tam PK, Ceccherini I, Hofstra RM, Fernandez R (2008) Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45(1):1–14

    Article  PubMed  CAS  Google Scholar 

  4. Garcia-Barcelo MM, Tang CS, Ngan ES, Lui VC, Chen Y, So MT, Leon TY, Miao XP, Shum CK, Liu FQ, Yeung MY, Yuan ZW, Guo WH, Liu L, Sun XB, Huang LM, Tou JF, Song YQ, Chan D, Cheung KM, Wong KK, Cherny SS, Sham PC, Tam PK (2009) Genome-wide association study identifies NRG1 as a susceptibility locus for Hirschsprung’s disease. Proc Natl Acad Sci U S A 106(8):2694–2699

    Article  PubMed  CAS  Google Scholar 

  5. Tam PK, Garcia-Barcelo M (2009) Genetic basis of Hirschsprung’s disease. Pediatr Surg Int 25(7):543–558

    Article  PubMed  Google Scholar 

  6. Amiel J, Laudier B, Attie-Bitach T, Trang H, de Pontual L, Gener B, Trochet D, Etchevers H, Ray P, Simonneau M, Vekemans M, Munnich A, Gaultier C, Lyonnet S (2003) Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 33(4):459–461

    Article  PubMed  CAS  Google Scholar 

  7. Wakamatsu N, Yamada Y, Yamada K, Ono T, Nomura N, Taniguchi H, Kitoh H, Mutoh N, Yamanaka T, Mushiake K, Kato K, Sonta S, Nagaya M (2001) Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Nat Genet 27(4):369–370

    Article  PubMed  CAS  Google Scholar 

  8. Puffenberger EG, Hosoda K, Washington SS, Nakao K, deWit D, Yanagisawa M, Chakravart A (1994) A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell 79(7):1257–1266

    Article  PubMed  CAS  Google Scholar 

  9. Hofstra RM, Osinga J, Tan-Sindhunata G, Wu Y, Kamsteeg EJ, Stulp RP, van Ravenswaaij-Arts C, Majoor-Krakauer D, Angrist M, Chakravarti A, Meijers C, Buys CH (1996) A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah–Waardenburg syndrome). Nat Genet 12(4):445–447

    Article  PubMed  CAS  Google Scholar 

  10. Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L, Holder S, Nihoul-Fekete C, Ponder BA, Munnich A (1994) Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature 367(6461):378–380

    Article  PubMed  CAS  Google Scholar 

  11. Garcia-Barcelo MM, Miao X, Lui VC, So MT, Ngan ES, Leon TY, Lau DK, Liu TT, Lao X, Guo W, Holden WT, Moore J, Tam PK (2007) Correlation between genetic variations in Hox clusters and Hirschsprung’s disease. Ann Hum Genet 71(Pt 4):526–536

    Article  PubMed  CAS  Google Scholar 

  12. Miao X, Garcia-Barcelo MM, So MT, Leon TY, Lau DK, Liu TT, Chan EK, Lan LC, Wong KK, Lui VC, Tam PK (2007) Role of RET and PHOX2B gene polymorphisms in risk of Hirschsprung’s disease in Chinese population. Gut 56(5):736

    Article  PubMed  Google Scholar 

  13. Miao X, Leon TY, Ngan ES, So MT, Yuan ZW, Lui VC, Chen Y, Wong KK, Tam PK, Garcia-Barcelo M (2010) Reduced RET expression in gut tissue of individuals carrying risk alleles of Hirschsprung’s disease. Hum Mol Genet 19(8):1461–1467

    Article  PubMed  CAS  Google Scholar 

  14. Emison ES, McCallion AS, Kashuk CS, Bush RT, Grice E, Lin S, Portnoy ME, Cutler DJ, Green ED, Chakravarti A (2005) A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434(7035):857–863

    Article  PubMed  CAS  Google Scholar 

  15. Tang CS, Sribudiani Y, Miao XP, de Vries AR, Burzynski G, So MT, Leon YY, Yip BH, Osinga J, Hui KJ, Verheij JB, Cherny SS, Tam PK, Sham PC, Hofstra RM, Garcia-Barcelo MM (2010) Fine mapping of the 9q31 Hirschsprung’s disease locus. Hum Genet 127(6):675–683

    Article  PubMed  CAS  Google Scholar 

  16. Natarajan D, Marcos-Gutierrez C, Pachnis V, de Graaff E (2002) Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor cells during mammalian embryogenesis. Development 129(22):5151–5160

    PubMed  CAS  Google Scholar 

  17. Emison ES, Garcia-Barcelo M, Grice EA, Lantieri F, Amiel J, Burzynski G, Fernandez RM, Hao L, Kashuk C, West K, Miao X, Tam PK, Griseri P, Ceccherini I, Pelet A, Jannot AS, de Pontual L, Henrion-Caude A, Lyonnet S, Verheij JB, Hofstra RM, Antinolo G, Borrego S, McCallion AS, Chakravarti A (2010) Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am J Hum Genet 87(1):60–74

    Article  PubMed  CAS  Google Scholar 

  18. Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N (2011) What can exome sequencing do for you? J Med Genet 48(9):580–589

    Article  PubMed  CAS  Google Scholar 

  19. Ng PC, Kirkness EF (2010) Whole genome sequencing. Methods Mol Biol 628:215–226

    Article  PubMed  CAS  Google Scholar 

  20. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, Lee C, Turner EH, Smith JD, Rieder MJ, Yoshiura K, Matsumoto N, Ohta T, Niikawa N, Nickerson DA, Bamshad MJ, Shendure J (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42(9):790–793

    Article  PubMed  CAS  Google Scholar 

  21. Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS (2005) Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinforma 6:55

    Article  Google Scholar 

  22. Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37(Web Server issue):W305–W311

    Article  PubMed  CAS  Google Scholar 

  23. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, Tranchevent LC, De Moor B, Marynen P, Hassan B, Carmeliet P, Moreau Y (2006) Gene prioritization through genomic data fusion. Nat Biotechnol 24(5):537–544

    Article  PubMed  CAS  Google Scholar 

  24. Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR (2002) GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 31(1):19–20

    Article  PubMed  CAS  Google Scholar 

  25. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  PubMed  CAS  Google Scholar 

  26. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249

    Article  PubMed  CAS  Google Scholar 

  27. Britsch S, Goerich DE, Riethmacher D, Peirano RI, Rossner M, Nave KA, Birchmeier C, Wegner M (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15(1):66–78

    Article  PubMed  CAS  Google Scholar 

  28. Crone SA, Negro A, Trumpp A, Giovannini M, Lee KF (2003) Colonic epithelial expression of ErbB2 is required for postnatal maintenance of the enteric nervous system. Neuron 37(1):29–40

    Article  PubMed  CAS  Google Scholar 

  29. Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322(5903):881–888

    Article  PubMed  CAS  Google Scholar 

  30. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzalez JR, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME (2006) Global variation in copy number in the human genome. Nature 444(7118):444–454

    Article  PubMed  CAS  Google Scholar 

  31. Burns AJ, Pachnis V (2009) Development of the enteric nervous system: bringing together cells, signals and genes. Neurogastroenterol Motil 21(2):100–102

    Article  PubMed  CAS  Google Scholar 

  32. Lemke G (1996) Neuregulins in development. Mol Cell Neurosci 7(4):247–262

    Article  PubMed  CAS  Google Scholar 

  33. Howard B, Panchal H, McCarthy A, Ashworth A (2005) Identification of the scaramanga gene implicates Neuregulin3 in mammary gland specification. Genes Dev 19(17):2078–2090

    Article  PubMed  CAS  Google Scholar 

  34. Howard BA (2008) The role of NRG3 in mammary development. J Mammary Gland Biol Neoplasia 13(2):195–203

    Article  PubMed  Google Scholar 

  35. Gizatullin RZ, Muravenko OV, Al-Amin AN, Wang F, Protopopov AI, Kashuba VI, Zelenin AV, Zabarovsky ER (2000) Human NRG3 gene Map position 10q22-q23. Chromosome Res 8(6):560

    Article  PubMed  CAS  Google Scholar 

  36. Britsch S (2007) The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol 190:1–65

    Article  PubMed  Google Scholar 

  37. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137

    Article  PubMed  CAS  Google Scholar 

  38. Zhang D, Sliwkowski MX, Mark M, Frantz G, Akita R, Sun Y, Hillan K, Crowley C, Brush J, Godowski PJ (1997) Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4. Proc Natl Acad Sci U S A 94(18):9562–9567

    Article  PubMed  CAS  Google Scholar 

  39. Tang CS, Cheng G, So MT, Yip BH, Miao XP, Wong EH, Ngan ES, Lui VC, Song YQ, Chan D, Cheung K, Yuan ZW, Lei L, Chung PH, Liu XL, Wong KK, Marshall CR, Scherer SW, Cherny SS, Sham PC, Tam PK, Garcia-Barcelo MM (2012) Genome-wide copy number analysis uncovers a new HSCR gene: NRG3. PLoS Genet 8(5):e1002687

    Article  PubMed  CAS  Google Scholar 

  40. Erlich Y, Edvardson S, Hodges E, Zenvirt S, Thekkat P, Shaag A, Dor T, Hannon GJ, Elpeleg O (2011) Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res 21(5):658–664

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in University NCET-10-0388, Natural Science Foundation of Hubei 2010CDB03203 and 2011CDB304, and the Fundamental Research Funds for the Central Universities HUST: No. 2010QN005. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors have declared no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoping Miao, Shaotao Tang or Guobin Wang.

Additional information

Jun Yang, Shengyu Duan, and Rong Zhong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

The pedigree of the affected Han Chinese family. Blue color represents HSCR patients. Patient II:3 is the mother and III:3 is the son (JPEG 23 kb)

High resolution image (TIFF 539 kb)

Supplementary Fig. 2

The sequence diagram of the identified false positive variants in UNC5C and C22orf42 (JPEG 50 kb)

High resolution image (TIFF 422 kb)

Supplementary Fig. 2b

(JPEG 42 kb)

High resolution image (TIFF 326 kb)

ESM 1

(DOC 30 kb)

ESM 2

(DOCX 13 kb)

ESM 3

(DOCX 15 kb)

ESM 4

(PDF 128 kb)

ESM 5

(PDF 103 kb)

ESM 6

(PDF 134 kb)

ESM 7

(DOCX 13 kb)

ESM 8

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Duan, S., Zhong, R. et al. Exome Sequencing Identified NRG3 as a Novel Susceptible Gene of Hirschsprung’s Disease in a Chinese Population. Mol Neurobiol 47, 957–966 (2013). https://doi.org/10.1007/s12035-012-8392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8392-4

Keywords

Navigation