Skip to main content

Advertisement

Log in

Low Molecular Weight Phospholipases A2 in Mammalian Brain and Neural Cells: Roles in Functions and Dysfunctions

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Several “low molecular weight” or “secretory” phospholipases A2 isoforms may be expressed in mammalian neural cells. Indeed, mRNAs for GIB, GIIA, GIIE, GIII, GV, GX, and GXII were detected in brain tissues despite different levels. However, only the presence of GIB, GIIA, and GV proteins has been clearly demonstrated in neural cells or in the nervous tissue. Although the roles of GIB and GV in the nervous tissue are still elusive, there is evidence to support the involvement of GIIA in physiological and pathological events, including neurotransmission, long-term potentiation, and neuritogenesis. The neurotoxic effects of an increase in GIIA may be envisaged under pathological conditions associated with the activation of astrocytes during inflammation or through activation of neurons and enzymes due to the stimulation of the NMDA glutamate receptor. In the past, elevation of GIIA expression in many acute and chronic neurological diseases is well known. Although each neurodegenerative disease has a separate etiology, many share similar neurochemical common processes, such as excitotoxicity, oxidative stress, and mitochondrial dysfunction, phenomena where GIIA play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schaloske RH, Dennis EA (2006) The phospholipase A 2 superfamily and its group numbering system. Biochim Biophys Acta 1761:1246–1259

    CAS  PubMed  Google Scholar 

  2. Lambeau G, Gelb MH (2008) Biochemistry and physiology of mammalian secreted phospholipases A 2 . Annu Rev Biochem 77:495–520

    CAS  PubMed  Google Scholar 

  3. Pan YH, Yu BZ, Singer AG, Ghomashchi F, Lambeau G, Gelb MH, Jain MK, Bahnson BJ (2002) Crystal structure of human group X secreted phospholipase A 2. Electrostatically neutral interfacial surface targets zwitterionic membranes. J Biol Chem 277:29086–29093

    CAS  PubMed  Google Scholar 

  4. Sekar K, Yu BZ, Rogers J, Lutton J, Liu X, Chen X, Tsai MD, Jain MK, Sundaralingam M (1997) Phospholipase A 2 engineering. Structural and functional roles of the highly conserved active site residue aspartate-99. Biochemistry 36:3104–3114

    CAS  PubMed  Google Scholar 

  5. Jain MK, Berg OG (2006) Coupling of the i-face and the active site of phospholipase A 2 for interfacial activation. Curr Opin Chem Biol 10:473–479

    CAS  PubMed  Google Scholar 

  6. Yang HC, Mosior M, Johnson CA, Chen Y, Dennis EA (1999) Group-specific assays that distinguish between the four major types of mammalian phospholipase A 2 . Anal Biochem 269:278–288

    CAS  PubMed  Google Scholar 

  7. Lucas KK, Dennis EA (2005) Distinguishing phospholipase A 2 types in biological samples by employing group-specific assays in the presence of inhibitors. Prostaglandins Other Lipid Mediat 77:235–248

    CAS  PubMed  Google Scholar 

  8. Elsbach P, Weiss J (1991) Utilization of labeled Escherichia coli as phospholipase substrate. Methods Enzymol 197:24–31

    CAS  PubMed  Google Scholar 

  9. Macchioni L, Corazzi L, Nardicchi V, Mannucci R, Arcuri C, Porcellati S, Sposini T, Donato R, Goracci G (2004) Rat brain cortex mitochondria release group II secretory phospholipase A 2 under reduced membrane potential. J Biol Chem 279:37860–37869

    CAS  PubMed  Google Scholar 

  10. Janssen MJ, Vermeulen L, van der Helm HA, Aarsman AJ, Slotboom AJ, Egmond MR (1999) Enzymatic properties of rat group IIA and V phospholipases A 2 compared. Biochim Biophys Acta 1440:59–72

    CAS  PubMed  Google Scholar 

  11. Yu L, Dennis EA (1991) Thio-based phospholipase assay. Methods Enzymol 197:65–75

    CAS  PubMed  Google Scholar 

  12. Hendrickson HS (1991) Phospholipase A 2 assays with fluorophore-labeled lipid substrates. Methods Enzymol 197:90–94

    CAS  PubMed  Google Scholar 

  13. Hendrickson HS, Hendrickson EK, Johnson ID, Farber SA (1999) Intramolecularly quenched BODIPY-labeled phospholipid analogs in phospholipase A 2 and platelet-activating factor acetylhydrolase assays and in vivo fluorescence imaging. Anal Biochem 276:27–35

    CAS  PubMed  Google Scholar 

  14. Thuren T, Virtanen JA, Somerharju PJ, Kinnunen PK (1988) Phospholipase A 2 assay using an intramolecularly quenched pyrene-labeled phospholipid analogue as a substrate. Anal Biochem 170:248–255

    CAS  PubMed  Google Scholar 

  15. Farber SA, Pack M, Ho SY, Johnson ID, Wagner DS, Dosch R, Mullins MC, Hendrickson HS, Hendrickson EK, Halpern ME (2001) Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292:1385–1388

    CAS  PubMed  Google Scholar 

  16. Feng L, Manabe K, Shope JC, Widmer S, Dewald DB, Prestwich GD (2002) A real-time fluorogenic phospholipase A 2 assay for biochemical and cellular activity measurements. Chem Biol 9:795–803

    CAS  PubMed  Google Scholar 

  17. Kim YJ, Kim KP, Rhee HJ, Das S, Rafter JD, Oh YS, Cho W (2002) Internalized group V secretory phospholipase A 2 acts on the perinuclear membranes. J Biol Chem 277:9358–9365

    CAS  PubMed  Google Scholar 

  18. Boilard E, Bourgoin SG, Bernatchez C, Poubelle PE, Surette ME (2003) Interaction of low molecular weight group IIA phospholipase A 2 with apoptotic human T cells: role of heparan sulfate proteoglycans. FASEB J 17:1068–1080

    CAS  PubMed  Google Scholar 

  19. Chiricozzi E, Fernandez-Fernandez S, Nardicchi V, Almeida A, Bolanos JP, Goracci G (2010) Group IIA secretory phospholipase A 2 (GIIA) mediates apoptotic death during NMDA-receptor activation in rat primary cortical neurons. J Neurochem 112:1574–1583

    CAS  PubMed  Google Scholar 

  20. de Caro J, Boudouard M, Bonicel J, Guidoni A, Desnuelle P, Rovery M (1981) Porcine pancreatic lipase. Completion of the primary structure. Biochim Biophys Acta 671:129–138

    PubMed  Google Scholar 

  21. Grataroli R, de Caro A, Guy O, Amic J, Figarella C (1981) Isolation and properties of prophospholipase A 2 from human pancreatic juice. Biochimie 63:677–684

    CAS  PubMed  Google Scholar 

  22. Verheij HM, Westerman J, Sternby B, de Haas GH (1983) The complete primary structure of phospholipase A 2 from human pancreas. Biochim Biophys Acta 747:93–99

    CAS  PubMed  Google Scholar 

  23. Steiner RA, Rozeboom HJ, de Vries A, Kalk KH, Murshudov GN, Wilson KS, Dijkstra BW (2001) X-ray structure of bovine pancreatic phospholipase A 2 at atomic resolution. Acta Crystallogr D Biol Crystallogr 57:516–526

    CAS  PubMed  Google Scholar 

  24. Dijkstra BW, Kalk KH, Hol WG, Drenth J (1981) Structure of bovine pancreatic phospholipase A2 at 1.7A resolution. J Mol Biol 147:97–123

    CAS  PubMed  Google Scholar 

  25. van den Berg B, Tessari M, de Haas GH, Verheij HM, Boelens R, Kaptein R (1995) Solution structure of porcine pancreatic phospholipase A2. EMBO J 14:4123–4131

    PubMed  Google Scholar 

  26. Ohsawa K, Mori A, Horie S, Saito T, Okuma Y, Nomura Y, Murayama T (2002) Arachidonic acid release and prostaglandin F2alpha formation induced by phenylarsine oxide in PC12 cells: possible involvement of secretory phospholipase A 2 activity. Biochem Pharmacol 64:117–124

    CAS  PubMed  Google Scholar 

  27. Kolko M, Christoffersen NR, Varoqui H, Bazan NG (2005) Expression and induction of secretory phospholipase A 2 group IB in brain. Cell Mol Neurobiol 25:1107–1122

    CAS  PubMed  Google Scholar 

  28. Kolko M, Christoffersen NR, Barreiro SG, Bazan NG (2004) Expression and location of mRNAs encoding multiple forms of secretory phospholipase A 2 in the rat retina. J Neurosci Res 77:517–524

    CAS  PubMed  Google Scholar 

  29. Kramer RM, Hession C, Johansen B, Hayes G, McGray P, Chow EP, Tizard R, Pepinsky RB (1989) Structure and properties of a human non-pancreatic phospholipase A 2 . J Biol Chem 264:5768–5775

    CAS  PubMed  Google Scholar 

  30. Stefanski E, Pruzanski W, Sternby B, Vadas P (1986) Purification of a soluble phospholipase A 2 from synovial fluid in rheumatoid arthritis. J Biochem (Tokyo) 100:1297–1303

    CAS  Google Scholar 

  31. Seilhamer JJ, Pruzanski W, Vadas P, Plant S, Miller JA, Kloss J, Johnson LK (1989) Cloning and recombinant expression of phospholipase A 2 present in rheumatoid arthritic synovial fluid. J Biol Chem 264:5335–5338

    CAS  PubMed  Google Scholar 

  32. Wery JP, Schevitz RW, Clawson DK, Bobbitt JL, Dow ER, Gamboa G, Goodson T Jr, Hermann RB, Kramer RM, McClure DB, Mihelich ED, Putnam JE, Sharp JD, Stark DH, Teater C, Warrick MW, Jones ND (1991) Structure of recombinant human rheumatoid arthritic synovial fluid phospholipase A 2 at 2.2 A resolution. Nature 352:79–82

    CAS  PubMed  Google Scholar 

  33. Molloy GY, Rattray M, Williams RJ (1998) Genes encoding multiple forms of phospholipase A 2 are expressed in rat brain. Neurosci Lett 258:139–142

    CAS  PubMed  Google Scholar 

  34. Moses GS, Jensen MD, Lue LF, Walker DG, Sun AY, Simonyi A, Sun GY (2006) Secretory PLA 2 -IIA: a new inflammatory factor for Alzheimer’s disease. J Neuroinflam 3:28

    Google Scholar 

  35. Yang HC, Mosior M, Ni B, Dennis EA (1999) Regional distribution, ontogeny, purification and characterization of the Ca2+-independent phospholipase A 2 from rat brain. J Neurochem 73:1278–1287

    CAS  PubMed  Google Scholar 

  36. Van Schaik RH, van den Koeduk CD, Neijs FW, Aarsman AJ, van den Bösch H (1993) Monoclonal antibodies against rat liver mitochondrial phospholipase A 2 : epitope analysis and application in western blotting. Int J Biochem 25:433–439

    PubMed  Google Scholar 

  37. Shirai Y, Ito M (2004) Specific differential expression of phospholipase A 2 subtypes in rat cerebellum. J Neurocytol 33:297–307

    CAS  PubMed  Google Scholar 

  38. Morioka N, Takeda K, Kumagai K, Hanada T, Ikoma K, Hide I, Inoue A, Nakata Y (2002) Interleukin-1beta-induced substance P release from rat cultured primary afferent neurons driven by two phospholipase A 2 enzymes: secretory type IIA and cytosolic type IV. J Neurochem 80:989–997

    CAS  PubMed  Google Scholar 

  39. Chen J, Shao C, Lazar V, Srivastava CH, Lee WH, Tischfield JA (1997) Localization of group IIc low molecular weight phospholipase A 2 mRNA to meiotic cells in the mouse. J Cell Biochem 64:369–375

    CAS  PubMed  Google Scholar 

  40. Tischfield JA, Xia YR, Shih DM, Klisak I, Chen J, Engle SJ, Siakotos AN, Winstead MV, Seilhamer JJ, Allamand V, Gyapay G, Lusis AJ (1996) Low-molecular-weight, calcium-dependent phospholipase A 2 genes are linked and map to homologous chromosome regions in mouse and human. Genomics 32:328–333

    CAS  PubMed  Google Scholar 

  41. Valentin E, Koduri RS, Scimeca JC, Carle G, Gelb MH, Lazdunski M, Lambeau G (1999) Cloning and recombinant expression of a novel mouse-secreted phospholipase A 2 . J Biol Chem 274:19152–19160

    CAS  PubMed  Google Scholar 

  42. Suzuki N, Ishizaki J, Yokota Y, Higashino K, Ono T, Ikeda M, Fujii N, Kawamoto K, Hanasaki K (2000) Structures, enzymatic properties and expression of novel human and mouse secretory phospholipase A 2 s. J Biol Chem 275:5785–5793

    CAS  PubMed  Google Scholar 

  43. Valentin E, Ghomashchi F, Gelb MH, Lazdunski M, Lambeau G (2000) Novel human secreted phospholipase A 2 with homology to the group III bee venom enzyme. J Biol Chem 275:7492–7496

    CAS  PubMed  Google Scholar 

  44. Masuda S, Yamamoto K, Hirabayashi T, Ishikawa Y, Ishii T, Kudo I, Murakami M (2008) Human group III secreted phospholipase A 2 promotes neuronal outgrowth and survival. Biochem J 409:429–438

    CAS  PubMed  Google Scholar 

  45. Cho W (2000) Structure, function and regulation of group V phospholipase A(2). Biochim Biophys Acta 1488:48–58

    CAS  PubMed  Google Scholar 

  46. Chen J, Engle SJ, Seilhamer JJ, Tischfield JA (1994) Cloning and recombinant expression of a novel human low molecular weight Ca(2+)-dependent phospholipase A 2 . J Biol Chem 269:2365–2368

    CAS  PubMed  Google Scholar 

  47. Kolko M, Christoffersen NR, Barreiro SG, Miller L, Pizza AJ, Bazan NG (2006) Characterization and location of secretory phospholipase A 2 groups IIE, V and X in the rat brain. J Neurosci Res 83:874–882

    CAS  PubMed  Google Scholar 

  48. Nardicchi V, Macchioni L, Ferrini M, Goracci G (2007) The presence of a secretory phospholipase A 2 in the nuclei of neuronal and glial cells of rat brain cortex. Biochim Biophys Acta 1771:1345–1352

    CAS  PubMed  Google Scholar 

  49. Cupillard L, Koumanov K, Mattei MG, Lazdunski M, Lambeau G (1997) Cloning, chromosomal mapping and expression of a novel human secretory phospholipase A 2 . J Biol Chem 272:15745–15752

    CAS  PubMed  Google Scholar 

  50. Masuda S, Murakami M, Takanezawa Y, Aoki J, Arai H, Ishikawa Y, Ishii T, Arioka M, Kudo I (2005) Neuronal expression and neuritogenic action of group X secreted phospholipase A 2 . J Biol Chem 280:23203–23214

    CAS  PubMed  Google Scholar 

  51. Gelb MH, Valentin E, Ghomashchi F, Lazdunski M, Lambeau G (2000) Cloning and recombinant expression of a structurally novel human secreted phospholipase A 2 . J Biol Chem 275:39823–39826

    CAS  PubMed  Google Scholar 

  52. Farooqui A A and Horrocks L A (2007) Glycerophospholipids in brain. Phospholipases A 2 in neurological disorders, Springer Science + Business Media, New York.

  53. Vadas P, Browning J, Edelson J, Pruzanski W (1993) Extracellular phospholipase A 2 expression and inflammation: the relationship with associated disease states. J Lipid Mediat 8:1–30

    CAS  PubMed  Google Scholar 

  54. Dubouix A, Campanac C, Fauvel J, Simon MF, Salles JP, Roques C, Chap H, Marty N (2003) Bactericidal properties of group IIa secreted phospholipase A 2 against Pseudomonas aeruginosa clinical isolates. J Med Microbiol 52:1039–1045

    CAS  PubMed  Google Scholar 

  55. Boyanovsky BB, Webb NR (2009) Biology of secretory phospholipase A 2 . Cardiovasc Drugs Ther 23:61–72

    CAS  PubMed  Google Scholar 

  56. Nevalainen TJ, Graham GG, Scott KF (2008) Antibacterial actions of secreted phospholipases A 2 . Review. Biochim Biophys Acta 1781:1–9

    CAS  PubMed  Google Scholar 

  57. Crowl RM, Stoller TJ, Conroy RR, Stoner CR (1991) Induction of phospholipase A 2 gene expression in human hepatoma cells by mediators of the acute phase response. J Biol Chem 266:2647–2651

    CAS  PubMed  Google Scholar 

  58. Pfeilschifter J, Schalkwijk C, Briner VA, van den Bosch H (1993) Cytokine-stimulated secretion of group II phospholipase A 2 by rat mesangial cells. Its contribution to arachidonic acid release and prostaglandin synthesis by cultured rat glomerular cells. J Clin Invest 92:2516–2523

    CAS  PubMed  Google Scholar 

  59. Sun GY, Hu ZY (1995) Stimulation of phospholipase A 2 expression in rat cultured astrocytes by LPS, TNF alpha and IL-1 beta. Prog Brain Res 105:231–238

    CAS  PubMed  Google Scholar 

  60. Tong W, Hu ZY, Sun GY (1995) Stimulation of group II phospholipase A 2 mRNA expression and release in an immortalized astrocyte cell line (DITNC) by LPS, TNF alpha and IL-1 beta. Interactive effects. Mol Chem Neuropathol 25:1–17

    CAS  PubMed  Google Scholar 

  61. Kramer RM, Sharp JD (1997) Structure, function and regulation of Ca2+-sensitive cytosolic phospholipase A 2 (cPLA 2 ). FEBS Lett 410:49–53

    CAS  PubMed  Google Scholar 

  62. Kolko M, Nielsen M, Bazan NG, Diemer NH (2002) Secretory phospholipase A(2) induces delayed neuronal COX-2 expression compared with glutamate. J Neurosci Res 69:169–177

    CAS  PubMed  Google Scholar 

  63. Choi SH, Langenbach R, Bosetti F (2006) Cyclooxygenase-1 and -2 enzymes differentially regulate the brain upstream NF-kappa B pathway and downstream enzymes involved in prostaglandin biosynthesis. J Neurochem 98:801–811

    CAS  PubMed  Google Scholar 

  64. Han WK, Sapirstein A, Hung CC, Alessandrini A, Bonventre JV (2003) Cross-talk between cytosolic phospholipase A 2 alpha (cPLA 2 alpha) and secretory phospholipase A 2 (sPLA 2 ) in hydrogen peroxide-induced arachidonic acid release in murine mesangial cells: sPLA 2 regulates cPLA 2 alpha activity that is responsible for arachidonic acid release. J Biol Chem 278:24153–24163

    CAS  PubMed  Google Scholar 

  65. Goracci G, Balestrieri ML, Nardicchi V (2009) Metabolism and functions of platelet-activating factor (PAF) in the nervous tissue, in neural lipids pp. 311-352. Springer, New York, USA.

  66. Goracci G, Francescangeli E (1991) Properties of PAF-synthesizing phosphocholinetransferase and evidence for lysoPAF acetyltransferase activity in rat brain. Lipids 26:986–991

    CAS  PubMed  Google Scholar 

  67. Negre-Aminou P, Nemenoff RA, Wood MR, de la Houssaye BA, Pfenninger KH (1996) Characterization of phospholipase A 2 activity enriched in the nerve growth cone. J Neurochem 67:2599–2608

    CAS  PubMed  Google Scholar 

  68. Nakashima S, Kitamoto K, Arioka M (2004) The catalytic activity, but not receptor binding, of sPLA 2 s plays a critical role for neurite outgrowth induction in PC12 cells. Brain Res 1015:207–211

    CAS  PubMed  Google Scholar 

  69. Makarova Ya V, Osipov A, Tsetlin VI, Utkin Yu N (2006) Influence of phospholipases A 2 from snake venoms on survival and neurite outhgrowth in pheochromocytoma cell line PC12. Biochemistry (Mosc) 71:678–684

    CAS  Google Scholar 

  70. Ikeno Y, Konno N, Cheon SH, Bolchi A, Ottonello S, Kitamoto K, Arioka M (2005) Secretory phospholipase A 2 induces neurite outgrowth in PC12 cells through lysophosphatidylcholine generation and activation of G2A receptor. J Biol Chem 280(30):28044–28052

    CAS  PubMed  Google Scholar 

  71. Forlenza OV, Mendes CT, Marie SK, Gattaz WF (2007) Inhibition of phospholipase A 2 reduces neurite outgrowth and neuronal viability. Prostaglandins Leukot Essent Fatty Acids 76:47–55

    CAS  PubMed  Google Scholar 

  72. Woelk H, Peiler-Ichikawa K, Binaglia L, Goracci G, Porcellati G (1974) Distribution and properties of phospholipases A1 and A 2 in synaptosomes and subsynaptosomal fractions of rat brain. Hoppe Seylers Z Physiol Chem 355:1535–1542

    CAS  PubMed  Google Scholar 

  73. Matsuzawa A, Murakami M, Atsumi G, Imai K, Prados P, Inoue K, Kudo I (1996) Release of secretory phospholipase A 2 from rat neuronal cells and its possible function in the regulation of catecholamine secretion. Biochem J 318(Pt 2):701–709

    CAS  PubMed  Google Scholar 

  74. Wei S, Ong WY, Thwin MM, Fong CW, Farooqui AA, Gopalakrishnakone P, Hong W (2003) Group IIA secretory phospholipase A 2 stimulates exocytosis and neurotransmitter release in pheochromocytoma-12 cells and cultured rat hippocampal neurons. Neuroscience 121:891–898

    CAS  PubMed  Google Scholar 

  75. Kim DK, Rordorf G, Nemenoff RA, Koroshetz WJ, Bonventre JV (1995) Glutamate stably enhances the activity of two cytosolic forms of phospholipase A 2 in brain cortical cultures. Biochem J 310(Pt 1):83–90

    CAS  PubMed  Google Scholar 

  76. DeCoster MA, Lambeau G, Lazdunski M, Bazan NG (2002) Secreted phospholipase A 2 potentiates glutamate-induced calcium increase and cell death in primary neuronal cultures. J Neurosci Res 67:634–645

    CAS  PubMed  Google Scholar 

  77. Kolko M, DeCoster MA, de Turco EB, Bazan NG (1996) Synergy by secretory phospholipase A 2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures. J Biol Chem 271:32722–32728

    CAS  PubMed  Google Scholar 

  78. Rodriguez de Turco EB, Jackson FR, DeCoster MA, Kolko M, Bazan NG (2002) Glutamate signalling and secretory phospholipase A 2 modulate the release of arachidonic acid from neuronal membranes. J Neurosci Res 68:558–567

    CAS  PubMed  Google Scholar 

  79. Anwyl R (2009) Metabotropic glutamate receptor-dependent long-term potentiation. Neuropharmacology 56:735–740

    CAS  PubMed  Google Scholar 

  80. Macdonald JF, Jackson MF, Beazely MA (2006) Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. Crit Rev Neurobiol 18:71–84

    CAS  PubMed  Google Scholar 

  81. Medina JH, Izquierdo I (1995) Retrograde messengers, long-term potentiation and memory. Brain Res Brain Res Rev 21:185–194

    CAS  PubMed  Google Scholar 

  82. Bazan NG, Zorumski CF, Clark GD (1993) The activation of phospholipase A 2 and release of arachidonic acid and other lipid mediators at the synapse: the role of platelet-activating factor. J Lipid Mediat 6:421–427

    CAS  PubMed  Google Scholar 

  83. Dorman RV, Hamm TF, Damron DS, Freeman EJ (1992) Modulation of glutamate release from hippocampal mossy fiber nerve endings by arachidonic acid and eicosanoids. Adv Exp Med Biol 318:121–136

    CAS  PubMed  Google Scholar 

  84. Grassi S, Francescangeli E, Goracci G, Pettorossi VE (1998) Role of platelet-activating factor in long-term potentiation of the rat medial vestibular nuclei. J Neurophysiol 79:3266–3271

    CAS  PubMed  Google Scholar 

  85. Kato K, Clark GD, Bazan NG, Zorumski CF (1994) Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature 367:175–179

    CAS  PubMed  Google Scholar 

  86. Lazarewicz JW, Wroblewski JT, Palmer ME, Costa E (1988) Activation of N-methyl-d-aspartate-sensitive glutamate receptors stimulates arachidonic acid release in primary cultures of cerebellar granule cells. Neuropharmacology 27:765–769

    CAS  PubMed  Google Scholar 

  87. Massicotte G, Oliver MW, Lynch G, Baudry M (1990) Effect of bromophenacyl bromide, a phospholipase A 2 inhibitor, on the induction and maintenance of LTP in hippocampal slices. Brain Res 537:49–53

    CAS  PubMed  Google Scholar 

  88. Miller B, Sarantis M, Traynelis SF, Attwell D (1992) Potentiation of NMDA receptor currents by arachidonic acid. Nature 355(6362):722–725

    CAS  PubMed  Google Scholar 

  89. Pellerin L, Wolfe LS (1991) Release of arachidonic acid by NMDA-receptor activation in the rat hippocampus. Neurochem Res 16:983–989

    CAS  PubMed  Google Scholar 

  90. Lambeau G, Lazdunski M (1999) Receptors for a growing family of secreted phospholipases A 2 . Trends Pharmacol Sci 20:162–170

    CAS  PubMed  Google Scholar 

  91. Praznikar ZJ, Kovacic L, Rowan EG, Romih R, Rusmini P, Poletti A, Krizaj I, Pungercar J (2008) A presynaptically toxic secreted phospholipase A 2 is internalized into motoneuron-like cells where it is rapidly translocated into the cytosol. Biochim Biophys Acta 1783:1129–1139

    CAS  PubMed  Google Scholar 

  92. Adibhatla RM, Hatcher JF (2008) Phospholipase A2, reactive oxygen species and lipid peroxidation in CNS pathologies. BMB Rep 41:560–567

    CAS  PubMed  Google Scholar 

  93. Sun GY, Xu J, Jensen MD, Simonyi A (2004) Phospholipase A 2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res 45:205–213

    CAS  PubMed  Google Scholar 

  94. Ankarcrona M (1998) Glutamate induced cell death: apoptosis or necrosis? Prog Brain Res 116:265–272

    CAS  PubMed  Google Scholar 

  95. Nicotera P, Ankarcrona M, Bonfoco E, Orrenius S, Lipton SA (1997) Neuronal necrosis and apoptosis: two distinct events induced by exposure to glutamate or oxidative stress. Adv Neurol 72:95–101

    CAS  PubMed  Google Scholar 

  96. Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6:337–350

    CAS  PubMed  Google Scholar 

  97. Adibhatla RM, Hatcher JF, Dempsey RJ (2003) Phospholipase A 2 , hydroxyl radicals and lipid peroxidation in transient cerebral ischemia. Antioxid Redox Signal 5:647–654

    CAS  PubMed  Google Scholar 

  98. Moncada S, Bolanos JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97:1676–1689

    CAS  PubMed  Google Scholar 

  99. Murphy AN, Fiskum G, Beal MF (1999) Mitochondria in neurodegeneration: bioenergetic function in cell life and death [Review]. J Cereb Blood Flow Metab 19:231–245

    CAS  PubMed  Google Scholar 

  100. Shelat PB, Chalimoniuk M, Wang JH, Strosznajder JB, Lee JC, Sun AY, Simonyi A, Sun GY (2008) Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A 2 in cortical neurons. J Neurochem 106:45–55

    CAS  PubMed  Google Scholar 

  101. Peterson B, Stovall K, Monian P, Franklin JL, Cummings BS (2008) Alterations in phospholipid and fatty acid lipid profiles in primary neocortical cells during oxidant-induced cell injury. Chem Biol Interact 174:163–176

    CAS  PubMed  Google Scholar 

  102. Kolko M, Bruhn T, Christensen T, Lazdunski M, Lambeau G, Bazan NG, Diemer NH (1999) Secretory phospholipase A 2 potentiates glutamate-induced rat striatal neuronal cell death in vivo. Neurosci Lett 274:167–170

    CAS  PubMed  Google Scholar 

  103. Yagami T, Ueda K, Asakura K, Hata S, Kuroda T, Sakaeda T, Takasu N, Tanaka K, Gemba T, Hori Y (2002) Human group IIA secretory phospholipase A 2 induces neuronal cell death via apoptosis. Mol Pharmacol 61:114–126

    CAS  PubMed  Google Scholar 

  104. Yagami T, Ueda K, Asakura K, Hayasaki-Kajiwara Y, Nakazato H, Sakaeda T, Hata S, Kuroda T, Takasu N, Hori Y (2002) Group IB secretory phospholipase A 2 induces neuronal cell death via apoptosis. J Neurochem 81:449–461

    CAS  PubMed  Google Scholar 

  105. Mathisen GH, Thorkildsen IH, Paulsen RE (2007) Secretory PLA 2 -IIA and ROS generation in peripheral mitochondria are critical for neuronal death. Brain Res 1153:43–51

    CAS  PubMed  Google Scholar 

  106. Sribar J, Copic A, Poljsak-Prijatelj M, Kuret J, Logonder U, Gubensek F, Krizaj I (2003) R25 is an intracellular membrane receptor for a snake venom secretory phospholipase A 2 . FEBS Lett 553:309–314

    CAS  PubMed  Google Scholar 

  107. Gadd ME, Broekemeier KM, Crouser ED, Kumar J, Graff G, Pfeiffer DR (2006) Mitochondrial iPLA 2 activity modulates the release of cytochrome c from mitochondria and influences the permeability transition. J Biol Chem 281:6931–6939

    CAS  PubMed  Google Scholar 

  108. Farooqui AA, Horrocks LA, Farooqui T (2007) Modulation of inflammation in brain: a matter of fat. J Neurochem 101:577–599

    CAS  PubMed  Google Scholar 

  109. Oka S, Arita H (1991) Inflammatory factors stimulate expression of group II phospholipase A 2 in rat cultured astrocytes. Two distinct pathways of the gene expression. J Biol Chem 266:9956–9960

    CAS  PubMed  Google Scholar 

  110. Jensen MD, Sheng W, Simonyi A, Johnson GS, Sun AY, Sun GY (2009) Involvement of oxidative pathways in cytokine-induced secretory phospholipase A 2 -IIA in astrocytes. Neurochem Int 55:362–368

    CAS  PubMed  Google Scholar 

  111. Bazan NG Jr (1970) Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim Biophys Acta 218:1–10

    CAS  PubMed  Google Scholar 

  112. Muralikrishna AR, Hatcher JF (2006) Phospholipase A 2 , reactive oxygen species and lipid peroxidation in cerebral ischemia. Free Radic Biol Med 40:376–387

    Google Scholar 

  113. Phillis JW, O’Regan MH (2004) A potentially critical role of phospholipases in central nervous system ischemic, traumatic and neurodegenerative disorders. Brain Res Brain Res Rev 44:13–47

    CAS  PubMed  Google Scholar 

  114. Adibhatla RM, Hatcher JF (2007) Secretory phospholipase A 2 IIA is up-regulated by TNF-alpha and IL-1alpha/beta after transient focal cerebral ischemia in rat. Brain Res 1134:199–205

    CAS  PubMed  Google Scholar 

  115. Kramer RM, Stephenson DT, Roberts EF, Clemens JA (1996) Cytosolic phospholipase A 2 (cPLA 2 ) and lipid mediator release in the brain. J Lipid Mediat Cell Signal 14:3–7

    PubMed  Google Scholar 

  116. Lin TN, Wang Q, Simonyi A, Chen JJ, Cheung WM, He YY, Xu J, Sun AY, Hsu CY, Sun GY (2004) Induction of secretory phospholipase A 2 in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. J Neurochem 90:637–645

    CAS  PubMed  Google Scholar 

  117. Sapirstein A, Bonventre JV (2000) Phospholipases A 2 in ischemic and toxic brain injury. Neurochem Res 25:745–753

    CAS  PubMed  Google Scholar 

  118. Hoda MN, Singh I, Singh AK, Khan M (2009) Reduction of lipoxidative load by secretory phospholipase A 2 inhibition protects against neurovascular injury following experimental stroke in rat. J Neuroinflammation 6:21

    PubMed  Google Scholar 

  119. Wang Q, Sun AY, Pardeike J, Muller RH, Simonyi A, Sun GY (2009) Neuroprotective effects of a nanocrystal formulation of sPLA 2 inhibitor PX-18 in cerebral ischemia/reperfusion in gerbils. Brain Res 1285:188–195

    CAS  PubMed  Google Scholar 

  120. Yagami T, Ueda K, Hata S, Kuroda T, Itoh N, Sakaguchi G, Okamura N, Sakaeda T, Fujimoto M (2005) S-2474, a novel nonsteroidal anti-inflammatory drug, rescues cortical neurons from human group IIA secretory phospholipase A(2)-induced apoptosis. Neuropharmacology 49:174–184

    CAS  PubMed  Google Scholar 

  121. Farooqui AA, Horrocks LA (1998) Plasmalogen-selective phospholipase A 2 and its involvement in Alzheimer’s disease. Biochem Soc Trans 26:243–246

    CAS  PubMed  Google Scholar 

  122. Farooqui AA, Horrocks LA (2006) Phospholipase A 2 -generated lipid mediators in the brain: the good, the bad and the ugly. Neuroscientist 12:245–260

    CAS  PubMed  Google Scholar 

  123. Stephenson DT, Lemere CA, Selkoe DJ, Clemens JA (1996) Cytosolic phospholipase A 2 (cPLA 2 ) immunoreactivity is elevated in Alzheimer’s disease brain. Neurobiol Dis 3:51–63

    CAS  PubMed  Google Scholar 

  124. Schaeffer EL, Gattaz WF (2008) Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A 2 enzyme. Psychopharmacology (Berl) 198:1–27

    CAS  Google Scholar 

  125. Sun GY, Horrocks LA, Farooqui AA (2007) The roles of NADPH oxidase and phospholipases A 2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 103:1–16

    CAS  PubMed  Google Scholar 

  126. Chalbot S, Zetterberg H, Blennow K, Fladby T, Grundke-Iqbal I, Iqbal K (2009) Cerebrospinal fluid secretory Ca2+-dependent phospholipase A 2 activity is increased in Alzheimer disease. Clin Chem 55:2171–2179

    CAS  PubMed  Google Scholar 

  127. Bueler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218:235–246

    PubMed  Google Scholar 

  128. Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109

    CAS  PubMed  Google Scholar 

  129. Klivenyi P, Beal MF, Ferrante RJ, Andreassen OA, Wermer M, Chin MR, Bonventre JV (1998) Mice deficient in group IV cytosolic phospholipase A 2 are resistant to MPTP neurotoxicity. J Neurochem 71:2634–2637

    Article  CAS  PubMed  Google Scholar 

  130. Chalimoniuk M, Stolecka A, Zieminska E, Stepien A, Langfort J, Strosznajder JB (2009) Involvement of multiple protein kinases in cPLA 2 phosphorylation, arachidonic acid release and cell death in in vivo and in vitro models of 1-methyl-4-phenylpyridinium-induced parkinsonism—the possible key role of PKG. J Neurochem 110:307–317

    CAS  PubMed  Google Scholar 

  131. Woelk H, Kanig K, Peiler-Ichikawa K (1974) Phospholipid metabolism in experimental allergic encephalomyelitis: activity of mitochondrial phospholipase A2 of rat brain towards specifically labelled 1, 2-diacyl-, 1-alk-1’-enyl-2-acyl- and 1-alkyl-2-acyl-sn-glycero-3-phosphorylcholine. J Neurochem 23:745–750

    CAS  PubMed  Google Scholar 

  132. Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Macklin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489

    CAS  PubMed  Google Scholar 

  133. Pinto F, Brenner T, Dan P, Krimsky M, Yedgar S (2003) Extracellular phospholipase A 2 inhibitors suppress central nervous system inflammation. Glia 44:275–282

    PubMed  Google Scholar 

  134. Cunningham TJ, Yao L, Oetinger M, Cort L, Blankenhorn EP, Greenstein JI (2006) Secreted phospholipase A 2 activity in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neuroinflammation 3:26

    PubMed  Google Scholar 

  135. Kalyvas A, Baskakis C, Magrioti V, Constantinou-Kokotou V, Stephens D, Lopez-Vales R, Lu JQ, Yong VW, Dennis EA, Kokotos G, David S (2009) Differing roles for members of the phospholipase A 2 superfamily in experimental autoimmune encephalomyelitis. Brain 132:1221–1235

    PubMed  Google Scholar 

  136. Kalyvas A, David S (2004) Cytosolic phospholipase A 2 plays a key role in the pathogenesis of multiple sclerosis-like disease. Neuron 41:323–335

    CAS  PubMed  Google Scholar 

  137. Koh JY, Kim DK, Hwang JY, Kim YH, Seo JH (1999) Antioxidative and proapoptotic effects of riluzole on cultured cortical neurons. J Neurochem 72:716–723

    CAS  PubMed  Google Scholar 

  138. Cudkowicz M E, Katz J, Moore D H, O’neill G, Glass J. D, Mitsumoto H, Appel S, Ravina B, Kieburtz K, Shoulson I, Kaufmann P, Khan J, Simpson E, Shefner J, Levin B, Cwik V, Schoenfeld D, Aggarwal S, McDermott M P and Miller R G (2009) Toward more efficient clinical trials for amyotrophic lateral sclerosis. Amyotroph Lateral Scler. Dec 4

  139. Vucic S, Cheah BC, Kiernan MC (2009) Defining the mechanisms that underlie cortical hyperexcitability in amyotrophic lateral sclerosis. Exp Neurol 220:177–182

    PubMed  Google Scholar 

  140. Martin LJ, Liu Z, Chen K, Price AC, Pan Y, Swaby JA, Golden WC (2007) Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death. J Comp Neurol 500:20–46

    CAS  PubMed  Google Scholar 

  141. Martin LJ (2010) The mitochondrial permeability transition pore: a molecular target for amyotrophic lateral sclerosis therapy. Biochim Biophys Acta 1802:186–197

    CAS  PubMed  Google Scholar 

  142. Klussmann S, Martin-Villalba A (2005) Molecular targets in spinal cord injury. J Mol Med 83:657–671

    CAS  PubMed  Google Scholar 

  143. Beattie MS, Farooqui AA, Bresnahan JC (2000) Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 17:915–925

    CAS  PubMed  Google Scholar 

  144. Hall ED, Springer JE (2004) Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx 1:80–100

    PubMed  Google Scholar 

  145. Murphy EJ, Behrmann D, Bates CM, Horrocks LA (1994) Lipid alterations following impact spinal cord injury in the rat. Mol Chem Neuropathol 23:13–26

    CAS  PubMed  Google Scholar 

  146. Liu NK, Zhang YP, Titsworth WL, Jiang X, Han S, Lu PH, Shields CB, Xu XM (2006) A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol 59:606–619

    CAS  PubMed  Google Scholar 

  147. Titsworth WL, Cheng X, Ke Y, Deng L, Burckardt KA, Pendleton C, Liu NK, Shao H, Cao QL, Xu XM (2009) Differential expression of sPLA2 following spinal cord injury and a functional role for sPLA2-IIA in mediating oligodendrocyte death. Glia 57:1521–1537

    PubMed  Google Scholar 

  148. Cummings BS (2007) Phospholipase A2 as targets for anti-cancer drugs. Biochem Pharmacol 74:949–959

    CAS  PubMed  Google Scholar 

  149. Laye JP, Gill JH (2003) Phospholipase A2 expression in tumours: a target for therapeutic intervention? Drug Discov Today 8:710–716

    CAS  PubMed  Google Scholar 

  150. Menschikowski M, Hagelgans A, Gussakovsky E, Kostka H, Paley EL, Siegert G (2008) Differential expression of secretory phospholipases A2 in normal and malignant prostate cell lines: regulation by cytokines, cell signaling pathways, and epigenetic mechanisms. Neoplasia 10:279–286

    CAS  PubMed  Google Scholar 

  151. Surrel F, Jemel I, Boilard E, Bollinger JG, Payre C, Mounier CM, Talvinen KA, Laine VJ, Nevalainen TJ, Gelb MH, Lambeau G (2009) Group X phospholipase A2 stimulates the proliferation of colon cancer cells by producing various lipid mediators. Mol Pharmacol 76:778–790

    CAS  PubMed  Google Scholar 

  152. Hernandez M, Burillo SL, Crespo MS, Nieto ML (1998) Secretory phospholipase A2 activates the cascade of mitogen-activated protein kinases and cytosolic phospholipase A2 in the human astrocytoma cell line 1321N1. J Biol Chem 273:606–612

    CAS  PubMed  Google Scholar 

  153. Martin R, Hernandez M, Ibeas E, Fuentes L, Salicio V, Arnes M, Nieto ML (2009) Secreted phospholipase A2-IIA modulates key regulators of proliferation on astrocytoma cells. J Neurochem 111:988–999

    CAS  PubMed  Google Scholar 

  154. Ibeas E, Fuentes L, Martin R, Hernandez M, Nieto ML (2009) Secreted phospholipase A2 type IIA as a mediator connecting innate and adaptive immunity: new role in atherosclerosis. Cardiovasc Res 81:54–63

    CAS  PubMed  Google Scholar 

  155. Farooqui AA, Ong WY, Horrocks LA (2006) Inhibitors of brain phospholipase A 2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev 58:591–620

    CAS  PubMed  Google Scholar 

  156. Farooqui AA, Litsky ML, Farooqui T, Horrocks LA (1999) Inhibitors of intracellular phospholipase A 2 activity: their neurochemical effects and therapeutical importance for neurological disorders. Brain Res Bull 49:139–153

    CAS  PubMed  Google Scholar 

  157. Oslund RC, Cermak N, Gelb MH (2008) Highly specific and broadly potent inhibitors of mammalian secreted phospholipases A 2 . J Med Chem 51:4708–4714

    CAS  PubMed  Google Scholar 

  158. Singer AG, Ghomashchi F, Le Calvez C, Bollinger J, Bezzine S, Rouault M, Sadilek M, Nguyen E, Lazdunski M, Lambeau G, Gelb MH (2002) Interfacial kinetic and binding properties of the complete set of human and mouse groups I, II, V, X and XII secreted phospholipases A 2 . J Biol Chem 277:48535–48549

    CAS  PubMed  Google Scholar 

  159. Schevitz RW, Bach NJ, Carlson DG, Chirgadze NY, Clawson DK, Dillard RD, Draheim SE, Hartley LW, Jones ND, Mihelich ED et al (1995) Structure-based design of the first potent and selective inhibitor of human non-pancreatic secretory phospholipase A 2 . Nat Struct Biol 2:458–465

    CAS  PubMed  Google Scholar 

  160. Pilitsis JG, Diaz FG, O’Regan MH, Phillis JW (2002) Differential effects of phospholipase inhibitors on free fatty acid efflux in rat cerebral cortex during ischemia-reperfusion injury. Brain Res 951:96–106

    CAS  PubMed  Google Scholar 

  161. Cunningham TJ, Souayah N, Jameson B, Mitchell J, Yao L (2004) Systemic treatment of cerebral cortex lesions in rats with a new secreted phospholipase A 2 inhibitor. J Neurotrauma 21:1683–1691

    PubMed  Google Scholar 

  162. Cunningham TJ, Maciejewski J, Yao L (2006) Inhibition of secreted phospholipase A 2 by neuron survival and anti-inflammatory peptide CHEC-9. J Neuroinflammation 3:25

    PubMed  Google Scholar 

  163. Asha DS (2009) Aging brain: prevention of oxidative stress by vitamin E and exercise. Sci World Journal 9:366–372

    Google Scholar 

  164. Butterfield DA, Castegna A, Drake J, Scapagnini G, Calabrese V (2002) Vitamin E and neurodegenerative disorders associated with oxidative stress. Nutr Neurosci 5:229–239

    CAS  PubMed  Google Scholar 

  165. Tran K, Wong JT, Lee E, Chan AC, Choy PC (1996) Vitamin E potentiates arachidonate release and phospholipase A 2 activity in rat heart myoblastic cells. Biochem J 319:385–391

    CAS  PubMed  Google Scholar 

  166. Pentland AP, Morrison AR, Jacobs SC, Hruza LL, Hebert JS, Packer L (1992) Tocopherol analogs suppress arachidonic acid metabolism via phospholipase inhibition. J Biol Chem 267:15578–15584

    CAS  PubMed  Google Scholar 

  167. Grau A, Ortiz A (1998) Dissimilar protection of tocopherol isomers against membrane hydrolysis by phospholipase A 2 . Chem Phys Lipids 91:109–118

    CAS  PubMed  Google Scholar 

  168. Chandra V, Jasti J, Kaur P, Betzel C, Srinivasan A, Singh TP (2002) First structural evidence of a specific inhibition of phospholipase A 2 by alpha-tocopherol (vitamin E) and its implications in inflammation: crystal structure of the complex formed between phospholipase A 2 and alpha-tocopherol at 1.8 A resolution. J Mol Biol 320:215–222

    CAS  PubMed  Google Scholar 

  169. Rastogi P, Beckett CS, Mchowat J (2007) Prostaglandin production in human coronary artery endothelial cells is modulated differentially by selective phospholipase A 2 inhibitors. Prostaglandins Leukot Essent Fatty Acids 76:205–212

    CAS  PubMed  Google Scholar 

  170. Domoki F, Zimmermann A, Lenti L, Toth-Szuki V, Pardeike J, Muller RH, Bari F (2009) Secretory phospholipase A 2 inhibitor PX-18 preserves microvascular reactivity after cerebral ischemia in piglets. Microvasc Res 78:212–217

    CAS  PubMed  Google Scholar 

  171. Tseng A, Inglis AS, Scott KF (1996) Native peptide inhibition. Specific inhibition of type II phospholipases A 2 by synthetic peptides derived from the primary sequence. J Biol Chem 271:23992–23998

    CAS  PubMed  Google Scholar 

  172. Church WB, Inglis AS, Tseng A, Duell R, Lei PW, Bryant KJ, Scott KF (2001) A novel approach to the design of inhibitors of human secreted phospholipase A 2 based on native peptide inhibition. J Biol Chem 276:33156–33164

    CAS  PubMed  Google Scholar 

  173. Chen H, Chan DC (2009) Mitochondrial dynamics—fusion, fission, movement and mitophagy—in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176

    CAS  PubMed  Google Scholar 

  174. Rigoni M, Paoli M, Milanesi E, Caccin P, Rasola A, Bernardi P, Montecucco C (2008) Snake phospholipase A 2 neurotoxins enter neurons, bind specifically to mitochondria and open their transition pores. J Biol Chem 283:34013–34020

    CAS  PubMed  Google Scholar 

  175. Logonder U, Jenko-Praznikar Z, Scott-Davey T, Pungercar J, Krizaj I, Harris JB (2009) Ultrastructural evidence for the uptake of a neurotoxic snake venom phospholipase A 2 into mammalian motor nerve terminals. Exp Neurol 219:591–594

    CAS  PubMed  Google Scholar 

  176. Thomas G, Bertrand F, Saunier B (2000) The differential regulation of group IIA and group V low molecular weight phospholipases A2 in cultured rat astrocytes. J Biol Chem 275:10876–10886

    CAS  PubMed  Google Scholar 

  177. Murakami M, Yoshihara K, Shimbara S, Lambeau G, Gelb MH, Singer AG, Sawada M, Inagaki N, Nagai H, Ishihara M, Ishikawa Y, Ishii T, Kudo I (2002) Cellular arachidonate-releasing function and inflammation-associated expression of group IIF secretory phospholipase A2. J Biol Chem 277:19145–19155

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (2008.0.21.321) from Fondazione Cassa di Risparmio di Perugia. We thank Prof. Ildo Nicoletti (Laboratory of Image Analysis, University of Perugia) and Prof. Rosario Donato (Department of Experimental Medicine and Biochemical Sciences, University of Perugia) for the confocal immunofluorescence analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfrancesco Goracci.

Additional information

Dedicated to Prof. Lloyd A. Horrocks

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goracci, G., Ferrini, M. & Nardicchi, V. Low Molecular Weight Phospholipases A2 in Mammalian Brain and Neural Cells: Roles in Functions and Dysfunctions. Mol Neurobiol 41, 274–289 (2010). https://doi.org/10.1007/s12035-010-8108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-010-8108-6

Keyword

Navigation