Skip to main content
Log in

Sintering behaviour and microwave dielectric properties of a new complex perovskite: (1 − x)(Sr0.3Ca0.427Nd0.182)TiO3−x SmAlO3 ceramics

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Structural features and microwave dielectric properties of (1−x)(Sr0.3Ca0.427Nd0.182)TiO3−x SmAlO3 (0.05≤x≤ 0.4) ceramics were investigated. X-ray diffraction patterns illustrated that solid solutions with the orthorhombic perovskite were shown to be formed in the ranges of 0.05≤x≤ 0.4. Moreover, the dielectric constant (ε r ) of sintered ceramics had a quasi-linear decrease with the increase in SmAlO 3 content. A certain amount of Sm and Al substitution for A- and B-sites could substantially improve the quality factor (Qf) of the ceramics. Increasing the oxygen octahedral distortion led to a decrease in the temperature coefficient of the resonant frequency (τ f) from 216.3 to −34.8 ppm°C−1. Additionally, optimized microwave dielectric properties can be achieved for the specimens using 0.75(Sr0.3Ca0.427Nd0.182)TiO3–0.25SmAlO3 ceramics [ε r ∼ 58.3, Qf ∼18800 GHz (at 4.65 GHz) and τ f∼ 2.3 ppm°C−1] after being sintered at 1500°C for 4 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sebastian M T 2008 Dielectric materials for wireless communications (Oxford, UK: Elsevier Publishers)

    Google Scholar 

  2. Reaney I M and Iddles D 2006 J. Am. Ceram. Soc. 89 2063

    Google Scholar 

  3. Reaney I M, Colla E L and Setter N 1994 Jpn. J. Appl. Phys. 33 3984

    Article  Google Scholar 

  4. Li J M and Qiu T 2012 Ceram. Int. 38 4331

    Article  Google Scholar 

  5. Wise P L, Reaney I M, Lee W E, Iddles D M, Cannell D S and Price T J 2002 J. Mater. Res. 17 2033

    Article  Google Scholar 

  6. Kell R C, Greenham A C and Olds G C E 1973 J. Am. Ceram. Soc. 56 352

    Article  Google Scholar 

  7. Kagata H and Kato J 1994 Jpn. J. Appl. Phys. 33 5463

    Article  Google Scholar 

  8. Nenasheva E A, Kanareykin A D, Kartenko N F, Dedyk A I and Karmanenko S F 2004 J. Electroceram. 13 235

    Article  Google Scholar 

  9. Huang C L, Chen H L and Wu C C 2001 Mater. Res. Bull. 36 1645

    Article  Google Scholar 

  10. Nenasheva E A, Mudroliubova L P and Kartenko N F 2003 , J. Eur. Ceram. Soc. 23 2443

    Article  Google Scholar 

  11. Khalam L A and Sebastian M T 2006 J. Am. Ceram. Soc. 89 3689

    Article  Google Scholar 

  12. Li M, Feteira A, Mirsaneh M, Lee S, Lanagan M T, Randall C A and Sinclair D C 2010 J. Am. Ceram. Soc. 93 4087

    Article  Google Scholar 

  13. Kim I S, Jung W H, Inaguma Y, Nakamura T and Itoh M 1995 Mater. Res. Bull. 30 307

    Article  Google Scholar 

  14. Yoshida M, Hara N, Takada T and Seki A 1997 Jpn. J. Appl. Phys. 36 6818

    Article  Google Scholar 

  15. Kim W S, Kim E S and Yoon K H 1999 J. Am. Ceram. Soc. 82 2111

    Article  Google Scholar 

  16. Liu F, Yuan C L, Liu X Y et al 2014 J. Mater. Sci.: Mater. Electron. DOI. doi:10.1007/s10854-014-2373-5

  17. Cho S Y, Kim I T and Hong K S 1999 J. Mater. Res. 14 114

    Article  Google Scholar 

  18. Hakki B W and Coleman P D 1960 IRE Trans. Microw. Theory Tech. 8 402

    Article  Google Scholar 

  19. Nishikawa T, Wakino K, Tamura H, Tanaka H and Ishikawa Y 1987 IEEE MTT-S Int. Microwave Symp. Dig. 3 277

    Google Scholar 

  20. Shannon R D 1976 Acta Crystallogr. A 32 751

    Article  Google Scholar 

  21. Shannon R D 1993 J. Appl. Phys. 73 348

    Article  Google Scholar 

  22. Kim E S, Chun E S and Kang D H 2007 J. Eur. Ceram. Soc. 27 3005

    Article  Google Scholar 

  23. Iddle D M, Bell A J and Moulson A J 1992 J. Mater. Sci. 27 6303

    Article  Google Scholar 

  24. Cheng H H and Shang H T 2014 Ceram. Int. 40 10111

    Article  Google Scholar 

  25. Brese N E and Keeffe M O 1991 Acta Crystallogr. 47 192

    Article  Google Scholar 

  26. Park H S, Yoon K H and Kim E S 2001 J. Am. Ceram. Soc. 84 99

    Article  Google Scholar 

Download references

Acknowledgement

Financial supports of the National Natural Science Foundation of China (Grant no. 11464006) and the Middle-aged and Young Teachers of the College and/or University for Basic Ability Promotion Project in Guangxi of China (Grants No. KY2016YB534) are gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FEI LIU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

QU, J.J., LIU, F., WEI, X. et al. Sintering behaviour and microwave dielectric properties of a new complex perovskite: (1 − x)(Sr0.3Ca0.427Nd0.182)TiO3−x SmAlO3 ceramics. Bull Mater Sci 39, 1645–1649 (2016). https://doi.org/10.1007/s12034-016-1333-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1333-5

Keywords

Navigation