Skip to main content

Advertisement

Log in

Fabrication of dye-sensitized solar cells with multilayer photoanodes of hydrothermally grown TiO2 nanocrystals and P25 TiO2 nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

TiO2 nanocrystals (NCs) with sizes around 20 nm were synthesized by hydrothermal method in acidic autoclaving pH. The hydrothermally grown TiO2 NCs and P25 TiO2 nanoparticles (NPs) were used in the preparation of two different pastes using different procedures. These pastes with different characteristics were separately deposited on FTO glass plates to form multilayer photoanodes of the dye-sensitized solar cells. The aim of this study was to search how a thin sub-layer of the hydrothermally grown TiO2 NCs in the photoanodes could improve the efficiency of TiO2 P25-based solar cells. The highest efficiency of 6.5% was achieved for a cell with a photoanode composed of one transparent sub-layer of hydrothermally grown TiO2 NCs and two over-layers of P25 NPs. Higher energy conversion efficiencies were also attainable using two transparent sub-layers of hydrothermally grown TiO2 NCs. In this case, an efficiency of 7.2% was achieved for a cell with a photoelectrode made of one over-layer of P25 TiO2 NPs. This could show an increase of about 30% in the efficiency compared to the similar cell with a photoanode made of two layers of hydrothermally grown TiO2 NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. O’Regan B and Gratzel M 1991 Nature 353 737

    Article  Google Scholar 

  2. Grätzel M 2009 Acc. Chem. Res. 42 1788

    Article  Google Scholar 

  3. Grätzel M 2003 J. Photochem. Photobiol. C 4 145

    Article  Google Scholar 

  4. Grätzel M 2004 J. Photochem. Photobiol. A 164 3

    Article  Google Scholar 

  5. Hagfeldt A, Cappel U B and Boschloo G 2012 Photovoltaic Solar Energy 1 481

    Google Scholar 

  6. Dhungel S K and Park J G 2010 Renew. Energy 35 2776

    Article  Google Scholar 

  7. Ito S, Chen P, Comte P, Nazeeruddin M K, Liska Péchy P and Grätzel M 2007 Prog. Photovolt: Res. Appl. 15 603

    Article  Google Scholar 

  8. Zukalova M, Prochazka J, Zukal A, Yum J H and Kavan L 2008 Inorg. Chim. Acta 361 656

    Article  Google Scholar 

  9. Nazeeruddin M K et al 2001, J. Am. Chem. Soc. 123 1613

    Article  Google Scholar 

  10. Shiga T and Motohiro T 2008 Thin Solid Films 516 1204

    Article  Google Scholar 

  11. Lagref J J, Nazeeruddin M K and Grätzel M 2008 Inorg. Chim. Acta 361 735

    Article  Google Scholar 

  12. Giribabu L, Kuma C V, Reddy V G, Reddy P Y, Srinivasa Rao C, Jang S R, Ho Yum J, Nazeeruddin M K and Grätzel M 2009 J. Chem. Sci. 121 75

    Article  Google Scholar 

  13. Horiuchi T, Miura H, Sumioka K and Uchida S 2004 J. Am. Chem. Soc. 126 12218

    Article  Google Scholar 

  14. Lai L F, Qin C., Chui Ch H, Islam A, Han L, Ho Ch L and Wong W Y 2013 Dyes Pigments 98 428

    Article  Google Scholar 

  15. Tan L L, Xie L J, Shen Y, Liu J M, Xiao L M, Kuang D B and Su Ch Y 2014 Dyes Pigments 100 269

    Article  Google Scholar 

  16. Awuaha S G, Polreis J, Prakashb J, Qiaob Q and Youa Y 2011 J. Photochem. Photobiol. A 224 116

    Article  Google Scholar 

  17. Caballero R, Barea E M, Fabregat-Santiago F, de la Cruz P, Márquez L, Langa F and Bisquert J 2008 J. Phys. Chem. C 112 18623

    Article  Google Scholar 

  18. Bernard M C, Cachet H, Falaras P, Hugot-Le Goff A, Kalbac M, Lukes I, Oanh N T, Stergiopoulos T and Arabatzis I 2003 J. Electrochem. Soc. 150 155

    Article  Google Scholar 

  19. Klein C, Nazeeruddin M K, Liska P, Censo D D, Hirata N, Palomares E, Durrant J R and Grätzel M 2005 Inorg. Chem. 44 178

    Article  Google Scholar 

  20. Ferber J and Luther J 1998 Sol. Energy Mater. Sol. Cells 54 265

    Article  Google Scholar 

  21. Rothenberger G, Comte P and Grätzel M 1999 Sol. Energy Mater. Sol. Cells 58 321

    Article  Google Scholar 

  22. Usami A 1999 Sol. Energy Mater. Sol. Cells 59 163

    Article  Google Scholar 

  23. Bakhshayesh A M and Mohammadi M R 2013 Ceram. Int. 39 7343

    Article  Google Scholar 

  24. Laskova B et al 2012, Solid State Electrochem. 16 2993

    Article  Google Scholar 

  25. Wu J, Lan Z, Hao S, Li P, Lin J, Huang M, Fang L and Huang Y 2008 Pure Appl. Chem. 80 2241

    Google Scholar 

  26. Park S J, Yoo K, Kim J Y, Young Kim J, Lee D K, Kim B S, Kim H, Kim J H, Cho J and Ko M J 2013 ACS Nano 7 4050

    Article  Google Scholar 

  27. Fabregat-Santiago F, Bisquert J, Garcia-Belmonte J, Boschloo J and Hagfeldt A 2005 Sol. Energy Mater. Sol. Cells 87 117

    Article  Google Scholar 

  28. Hauch A and Georg 2001 Electrochimica Acta 46 3457

    Article  Google Scholar 

  29. Mishra A, Fischer M K R and Uerle P B 2009 Angew. Chem. Int. Ed. 48 2474

    Article  Google Scholar 

  30. Murakami T N and Grätzel M 2008 Inorg. Chim. Acta 361 572

    Article  Google Scholar 

  31. Murakami T N, Ito S, Wang Q, Nazeeruddin M K, Bessho T, Cesar I, Liska P, Hu Baker R, Comte P, Péchy P and Grätzel M 2006 J. Electrochem. Soc. 153 A2255

    Article  Google Scholar 

  32. Mu Leea K, Chenb Po Y, Hsub Ch Y, Huangb J H, Hoc W H, Chenc H C. and Hoa K C. 2009, J. Power Sources 188 313

    Article  Google Scholar 

  33. Tachibana Y, Hara K, Sayama K and Arakawa H 2002 Chem. Mater. 14 2527

    Article  Google Scholar 

  34. Hardin B E, Hoke E T, Armstrong P B, Yum J H, Comte P, Torres T, Fréchet J M J, Nazeeruddin M K, Grätzel M and McGehee M D 2009 Nat. Photonics 3 406

    Article  Google Scholar 

  35. Rodriguez I, Ramiro-Manzano F, Atienzar M. J M, Meseguer F, Garcia H and Corma A 2007 J. Mater. Chem. 17 3205

    Article  Google Scholar 

  36. Yanagida S 2006 C. R. Chimie 9 597

  37. Song-Yuan D and Kong-Jia W 2003 Chin. Phys. Lett. 20 953

    Article  Google Scholar 

  38. Zukalova M, Prochazka J, Zukal A, Yum J H and Kavan L 2008 Inorg. Chim. Acta 361 656

    Article  Google Scholar 

  39. DongMei X, ShuJing F, Yuan L, GuoJun D, XuRui X, XuePing L and XiaoWen Z 2007 Chinese Sci. Bull. 52 2481

    Article  Google Scholar 

  40. Bisquert J, Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Barea E M and Palomares E 2008 Inorg. Chim. Acta 361 684

    Article  Google Scholar 

  41. BeiBei M, Rui G, LiDuo W, YiFeng Z, YanTao S H, Yi G, HaoPeng D and Yong Q 2010 Sci. China Chem. 53 1669

    Article  Google Scholar 

  42. Bakhshayesh A M, Mohammadi M R and Fray D J 2012 Electrochimica Acta 78 384

    Article  Google Scholar 

  43. Koo H J, Park J, Yoo B, Yoo K, Kim K and Park N G 2008 Inorg. Chim. Acta 361 77

    Article  Google Scholar 

  44. Usami A 2000 Sol. Energy Mater. Sol. Cells 64 73

    Article  Google Scholar 

  45. Usami A 1997 Chem. Phys. Lett. 277 105

    Article  Google Scholar 

  46. Barbe Ch J, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V and Gratzel M 1997 J. Am. Ceram. Soc. 80 3157

    Article  Google Scholar 

  47. Ito S, Kitamurab T, Wadab Y and Yanagida S. 2003, Sol. Energy Mater. Sol. Cells 7 3

    Article  Google Scholar 

  48. Lee J K, Jeong B H, Jang S I, Kim Y G, Jang Y W, Lee S B and Kim M R 2009 J. Ind. Eng. Chem. 15 724

    Article  Google Scholar 

  49. Chen Y, Stathatos E and Dionysios D 2009 J. Photochem. Photobiol. A 203 192

    Article  Google Scholar 

  50. Hussain M, Ceccarelli R, Marchisio D L, Fino D, Russo N and Geobaldo F 2010 Chem. Eng. J. 157 45

    Article  Google Scholar 

  51. Ito S, Murakami T N, Comte P, Liska P, Grätzel C, Nazeeruddin M K and Grätzel M 2008 Thin Solid Films 516 4613

    Article  Google Scholar 

  52. Ito S, Chen P, Comte P, Nazeeruddin M K, Liska P, Péchy P and Grätzel M 2007 Prog. Photovolt. Res. Appl. 15 603

    Article  Google Scholar 

  53. Scherrer P 1918 Mathematisch-Physikalische Klasse 2 98

    Google Scholar 

  54. Langford J and Wilson A 1978 J. Appl. Crystallogr. 11 102

    Article  Google Scholar 

  55. Peter L 2007 J. Electroanal. Chem. 599 233

    Article  Google Scholar 

  56. Halme J, Boschloo G, Hagfeldt A and Lund P 2008 J. Phys. Chem. C 112 5623

    Article  Google Scholar 

  57. Peter L M and Wijayantha K G U 2000 Electrochimica Acta 45 4543

    Article  Google Scholar 

  58. Fisher A C, Peter L M, Ponomarev E A, Walker A B and Wijayantha K G U 2000 J. Phys. Chem. B 104 949

    Article  Google Scholar 

  59. Adachi M, Sakamoto M, Jiu J, Ogata Y and Isoda S 2006, J. Phys. Chem. B 110 13872

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MAZIAR MARANDI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MARANDI, M., SANI SABET, M.N. & AHMADLOO, F. Fabrication of dye-sensitized solar cells with multilayer photoanodes of hydrothermally grown TiO2 nanocrystals and P25 TiO2 nanoparticles. Bull Mater Sci 39, 1403–1410 (2016). https://doi.org/10.1007/s12034-016-1289-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1289-5

Keywords

Navigation