Skip to main content
Log in

Bandgap engineered graphene and hexagonal boron nitride for resonant tunnelling diode

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this article a double-barrier resonant tunnelling diode (DBRTD) has been modelled by taking advantage of single-layer hexagonal lattice of graphene and hexagonal boron nitride (h-BN). The DBRTD performance and operation are explored by means of a self-consistent solution inside the non-equilibrium Green’s function formalism on an effective mass-Hamiltonian. Both p- and n-type DBRTDs exhibit a negative differential resistance effect, which entails the resonant tunnelling through the hole and electron bound states in the graphene quantum well, respectively. The peak-to-valley ratio of approximately 8 (3) for p-type (n-type) DBRTD with quantum well of 5.1 nm (4.3 nm) at a barrier width of 1.3 nm was achieved for zero bandgap graphene at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Li S, Lijie C, Hao L, Pavel B S, Chuanhong J, Jie N et al 2010, Nano Lett. 10 3209

    Google Scholar 

  2. Ponomarenko L A, Yang R, Mohiuddin T M, Katsnelson M I, Novoselov K S, Morozov S V et al 2009, Phys. Rev. Lett. 102 206603

    Google Scholar 

  3. Zomer P J, Dash S P, Tombros N and Van Wees B J 2011 Appl. Phys. Lett. 99 232104

    Google Scholar 

  4. Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S et al 2010, Nat. Nanotechnol. 5 722

    Google Scholar 

  5. Jiamin X, Javier S -Y, Danny B, Philippe J, Aparna D, Watanabe K et al 2011, Nat. Mater. 10 282

    Google Scholar 

  6. Régis D, Yang W, Victor W B, William R, Hsin-Zon T, Qiong W et al 2011, Nano Lett. 11 2291

    Google Scholar 

  7. Yongji G, Gang S, Zhuhua Z, Wu Z, Jeil J, Weilu G et al 2014, Nat. Commun. 5 4193

    Google Scholar 

  8. Lijie C, Li S, Chuanhong J, Deep J, Dangxin W, Yongjie L et al 2010, Nat. Mater. 9 430

    Google Scholar 

  9. Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V et al 2009, Adv. Mater. 21 4726

    Google Scholar 

  10. Brenner K and Raghunath M 2010 Appl. Phys. Lett. 96 063104

    Google Scholar 

  11. Damon B F, Roksana G -M, Vasili P, Yu-Ming L, George S T, James C T et al 2008, Nano Lett. 9 388

    Google Scholar 

  12. Hongtao L, Yunqi L and Daoben Z 2011 J. Mater. Chem. 21 3335

    Google Scholar 

  13. Angel R 2010 Nat. Mater. 9 379

    Google Scholar 

  14. Jun H, Ke-Qiu C, Zhi-Qiang F, Li-Ming T and Hu W P 2010 Appl. Phys. Lett. 97 193305

    Google Scholar 

  15. Xu B, Lu Y H, Feng Y P and Lin J Y 2010 J. Appl. Phys. 108 073711

    Google Scholar 

  16. Basheer E A, Prakash P and Swapan K P 2011 New J. Phys. 13 053008

    Google Scholar 

  17. Junwen L and Vivek B S 2011 Appl. Phys. Lett. 98 013105

    Google Scholar 

  18. Gyungseon S and Jing G 2011 Appl. Phys. Lett. 98 143107

    Google Scholar 

  19. Gianluca F, Alessandro B, Samantha B and Giuseppe I 2012 ACS Nano 6 2642

    Google Scholar 

  20. Hansen T, Kai-Tak L, Sharjeel B K and Gengchiau L 2009 , J. Appl. Phys. 105 084317

    Google Scholar 

  21. Nguyen V H, Bournel A and Dollfus P 2011 Semicond. Sci. 26 125012

    Google Scholar 

  22. Gianluca G, Petr A K, Geert B, Paul J K and Jeroen van den B 2007 Phys. Rev. B 76 073103

    Google Scholar 

  23. Neerav K and Saroj K N 2011 Nano Lett. 11 5274

    Google Scholar 

  24. Penchalaiah P and Raina J P 2012 Innovative systems design and engineering 3 27

    Google Scholar 

  25. ATLAS user’s manual 2013 (Santa Clara, CA: Silvaco Inc.)

  26. Chenjing L F and William R F 1994 J. Appl. Phys. 76 2881

    Google Scholar 

  27. Gerhard K, Roger K L, Chris B R, Chenjing L F and William R F 1998 VLSI Design 6 107

    Google Scholar 

  28. Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109

    Google Scholar 

  29. Nam Do V, Dollfus P and Lien Nguyen V 2006 J. Appl. Phys. 100 093705

    Google Scholar 

  30. Yang X, Zhendong G, Huabin C, You Y, Jiechao L et al 2011, Appl. Phys. Lett. 99 133109

    Google Scholar 

  31. Yingcai F, Mingwen Z, Zhenhai W, Xuejuan Z and Hongyu Z 2011 Appl. Phys. Lett. 98 083103

    Google Scholar 

  32. Mucciolo E R, Castro Neto A H and Lewenkopf C H 2009 Phys. Rev. B 79 075407

    Google Scholar 

  33. Nguyen V H, Mazzamuto F, Bournel A and Dollfus 2012, J. Phys. D: Appl. Phys. 45 325104

    Google Scholar 

  34. Choongyu H, David A S, Sung-Kwan M, William R, Ariel I, Yuegang Z et al 2012, Sci. Rep. 2 590

    Google Scholar 

  35. Gang S, Yuranan H, Zheng L, Yongji G, Weilu G, Bo L et al 2014, Nano Lett. 14 1739

    Google Scholar 

  36. AlZahrani A Z and Srivastava G P 2009 Braz. J. Phys. 39 694

    Google Scholar 

  37. Michael E L, Sergey L R and Michael S S 2001 Properties of advanced semiconductor materials: GaN, AlN, InN, BN, SiC, SiGe (New York, Wiley) ISBN: 978-0-471-35827-5

  38. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V et al 2004, Science 306 666

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PENCHALAIAH PALLA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PALLA, P., UPPU, G.R., ETHIRAJ, A.S. et al. Bandgap engineered graphene and hexagonal boron nitride for resonant tunnelling diode. Bull Mater Sci 39, 1441–1451 (2016). https://doi.org/10.1007/s12034-016-1285-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1285-9

Keywords

Navigation