Skip to main content

Advertisement

Log in

In vitro bioactivity studies of larnite and larnite/chitin composites prepared from biowaste for biomedical applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Larnite (Ca2SiO4) was synthesized by the sol–gel combustion process by using raw eggshell powder as a calcium source and urea as a fuel. The main focus of this work is to convert biowaste into a biomedical material at a low-processing temperature. X-ray diffraction (XRD) pattern confirms the phase purity of the larnite and Fourier transform infrared (FTIR) spectra confirms the presence of characteristic functional groups of larnite. Scanning electron microscopy (SEM) image shows agglomerated particles with cauliflower-like morphology and energy dispersive X-ray spectroscopy (EDX) confirms the presence of the stoichiometric ratio of required elements. Atomic force microscope (AFM) images reveal the presence of pores on the surface of spherical particles. Larnite/chitin composites were fabricated into scaffold with different ratios of bioceramic to biopolymer (70:30, 80:20) to investigate the influence of the polymer content on the apatite formation ability in simulated body fluid (SBF) medium. XRD pattern and FTIR spectra of the scaffold immersed in SBF shows apatite deposition within 5 days. The deposition of hydroxyapatite (HAP) on the scaffold surface increases with the increase in polymer content of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Chevalier J and Gremillard L 2009 J. Eur. Ceram. Soc. 29 1245

    Article  Google Scholar 

  2. Hench L L and Ethridge E C 1982 Biomaterials: an interfacial approach (New York: Academic Press)

    Google Scholar 

  3. Vallet-Regi M and Gonzalez-Calbet J M 2004 Prog. Solid State Chem. 32 1

    Article  Google Scholar 

  4. Hench L L, Splinter R J, Allen W C and Greenlee T K 1971 J. Biomed. Mater. Res. Symp. 2 117

    Article  Google Scholar 

  5. Hench L L 1991 J. Am. Ceram. Soc. 74 1487

    Article  Google Scholar 

  6. Udduttula A and Swamiappan S 2014 Bull. Mater. Sci. 37 207

    Article  Google Scholar 

  7. Wu C and Chang J 2004 Mater. Lett. 58 2415

    Article  Google Scholar 

  8. Wu C and Chang J 2007 J. Biomed. Mater. Res. B Appl. Biomater. 83 153

    Article  Google Scholar 

  9. Gou Z and Chang J 2004 J. Eur. Ceram. Soc. 24 93

    Article  Google Scholar 

  10. Gou Z, Chang J and Zhai W 2005 J. Eur. Ceram. Soc. 25 1507

    Article  Google Scholar 

  11. Zhong H, Wang L, Fan Y, He L, Lin K, Jiang W et al 2011, Ceram. Int. 37 2459

    Article  Google Scholar 

  12. Liu X, Tao S and Ding C 2002 Biomaterials 23 963

    Article  Google Scholar 

  13. Cheng W, Li H and Chang J 2005 Mater. Lett. 59 2214

    Article  Google Scholar 

  14. Sprio S, Tampieri A, Celotti G and Landi E 2009 J. Mech. Behav. Biomed. Mater. 2 147

    Article  Google Scholar 

  15. Choudhary R, Koppala S, Srivastava A and Swamiappan S 2015 J. Sol–Gel Sci. Technol. 74 631

    Article  Google Scholar 

  16. Yunos D M, Bretcanu O and Boccaccini A R 2008 J. Mater. Sci. 43 4433

    Article  Google Scholar 

  17. Shogren R L and Bagley E B 1999 Natural polymers as advanced materials (USA: Oxford University Press, ACS symposium series)

    Google Scholar 

  18. Puppi D, Chiellini F, Piras A M and Chiellini E 2010 Prog. Polym. Sci. 35 403

    Article  Google Scholar 

  19. Verma N, Kumar V and Bansal M C 2012 Pol. J. Environ. Stud. 21 491

    Google Scholar 

  20. Onoda H and Nakanishi H 2012 Nat. Resour. J. 3 71

    Google Scholar 

  21. Onoda H, Nakanishi H and Takenaka A 2012 J. Ecotechnol. Res. 16 85

    Google Scholar 

  22. Akram M, Ahmed R, Shakir I, Ibrahim W A W and Hussain R 2014 J. Mater. Sci. 49 1461

    Article  Google Scholar 

  23. Kokubo T and Takadama H 2006 Biomaterials 27 2907

    Article  Google Scholar 

  24. Kalinkin A M, Boldyrev V V, Politovaa A A, Kalinkina E V, Makarov V N and Kalinnikov V T 2003 Glass Phys. Chem. 29 410

    Article  Google Scholar 

  25. Udduttula A, Koppala S and Swamiappan S 2013 Trans. Indian Ceram. Soc. 72 257

    Article  Google Scholar 

  26. Klug H and Alexander L 1962 X-ray diffraction procedures (New York: John Wiley and Sons Inc).

    Google Scholar 

  27. Sutka A and Mezinskis G 2012 Front. Mater. Sci. 6 128

    Article  Google Scholar 

  28. Froberg L and Hupa L 2008 Appl. Surf. Sci. 254 1622

    Article  Google Scholar 

  29. Paital S R and Dahotre N B 2009 Mater. Sci. Eng. R 66 1

    Article  Google Scholar 

  30. Saiz E, Goldman M, Gomez-Vega J M, Tomsia A P, Marshall G W and Marshall S J 2002 Biomaterials 23 3749

    Article  Google Scholar 

  31. Montenero A, Gnappi G, Ferrari F, Cesari M, Salvioli E, Mattogno L et al 2000, J. Mater. Sci. 35 2791

    Article  Google Scholar 

  32. Hench L L 1998 Biomaterials 19 1419

    Article  Google Scholar 

  33. Kokubo T 1998 Acta Mater. 46 2519

    Article  Google Scholar 

  34. Radin S R and Ducheyne P 1992 J. Mater. Sci. Mater. Med. 3 33

    Article  Google Scholar 

  35. Pighinelli L and Kucharska M 2013 Carbohydr. Polym. 93 256

    Article  Google Scholar 

  36. Zhao Y, Ning C and Chang J 2009 J. Sol–Gel Sci. Technol. 52 69

    Article  Google Scholar 

  37. Ohtsuki C, Kokubo T and Yamamuro T 1992 J. Non-Cryst. Solids 143 84

    Article  Google Scholar 

  38. Hou X, Yin G, Chen X, Liao X, Yao Y and Huang Z 2011 Appl. Surf. Sci. 257 3417

    Article  Google Scholar 

  39. Mohamed K R, Beherei H H and El-Rashidy Z M 2014 J. Adv. Res. 5 201

    Article  Google Scholar 

  40. Kay S, Thapa A, Haberstroh K M and Webster T J 2002 Tissue Eng. 8 753

    Article  Google Scholar 

  41. Palin E, Liu H N and Webster T J 2005 Nanotechnology 16 1828

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Vellore Institute of Technology Research Grants for Engineering, Management and Science (VITRGEMS). We thank DST-FIST for the XRD facility, SEM/EDX measurements and nanotechnology lab supported by NSTI, DST for AFM facility. We are also thankful to analytical services of the NRC, SRM University for FESEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SASIKUMAR SWAMIAPPAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CHOUDHARY, R., VENKATRAMAN, S.K., RANA, A. et al. In vitro bioactivity studies of larnite and larnite/chitin composites prepared from biowaste for biomedical applications. Bull Mater Sci 39, 1213–1221 (2016). https://doi.org/10.1007/s12034-016-1245-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1245-4

Keywords

Navigation