Skip to main content
Log in

Effects of size on mass density and its influence on mechanical and thermal properties of ZrO2 nanoparticles in different structures

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This study investigates the effect of size on mass density and its subsequent influence on the other physical parameters of zirconia nanoparticles in the structural forms of cubic, tetragonal and monoclinic. The general equations for these calculations are established based on the variation of lattice parameter model and surface internal atoms ratio. The mass density of nanoparticles differs from the bulk value when particle size decreases. At a diameter of 4 nm, the mass density values of zirconia nanoparticles are 3.898, 3.626 and 3.488 g ⋅ cm−3 compared to 6.25, 6.1 and 5.87 g⋅ cm−3 for bulk cubic, tetragonal and monoclinic forms, respectively. These results indicate that the variation in mass density is largely due to the differences on their boundaries and the variation in lattice parameters. The calculated results agree well with the available experimental data for the monoclinic form structure of ZrO 2 nanoparticles. The relationship between mass density and melting temperature; and Debye temperature and cohesive energy are proposed. All these parameters have the same nanosize dependence in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Dercz G, Prusik K and Pająk L 2008 JAMME 31 408

    Google Scholar 

  2. Porter D L, Evans A G and Heuer A H 1979 Acta Metall. 27 1649

    Article  Google Scholar 

  3. Christensen A and Carter E A 1998 Phys. Rev. B 58 8050

    Article  Google Scholar 

  4. Sahu R H and Ranga Rao G 2000 Bull. Mater. Sci. 23 349

    Article  Google Scholar 

  5. Gleiter H 2000 Acta Mater. 48 1

    Article  Google Scholar 

  6. Sun C Q 2009 Prog. Mater. Sci. 54 179

    Article  Google Scholar 

  7. Hadjoub Z, Beldi I, Bouloudnine M, Gacem A and Doghmane A 1998 Electron. Lett. 34 313

    Article  Google Scholar 

  8. Gacem A, Doghmane A and Hadjoub Z 2011 Adv. Mater. Res. 324 93

    Article  Google Scholar 

  9. Qiao Z, Latz R and Mergel D 2004 Thin Solid Films 466 250

    Article  Google Scholar 

  10. Safaei A 2012 Nano 7 1250009

    Article  Google Scholar 

  11. Lovell S and Rollinson E 1968 Nature 218 1179

    Article  Google Scholar 

  12. Siegel J, Lyutakov O, Rybka V, Kolská Z and Švorčik V 2011 Nanoscale Res. Lett. 6 96

    Article  Google Scholar 

  13. Kolská Z, Řiha J, Hnatowicz V and Švorčik V 2010 Mater. Lett. 64 1160

    Article  Google Scholar 

  14. Opalinska A, Malka I, Dzwolak W, Chudoba T, Presz A and Lojkowski W 2015 J. Nanotechnol. 6 27

    Google Scholar 

  15. Nanda K K 2012 Phys. Lett. A 376 3301

    Article  Google Scholar 

  16. Fujii K, Tanaka M, Nezu Y, Nakayama K, Fujimoto H, De Bièvre P and Valkiers S 1999 Metrologia 36 455

    Article  Google Scholar 

  17. Shen T D, Zhang J and Zhao Y 2008 Acta Mater. 56 3663

    Article  Google Scholar 

  18. Qin W and Szpunar J A 2005 Phil. Mag. Lett. 85 649

    Article  Google Scholar 

  19. Zhu Y F, Zheng W T and Jiang Q 2009 Appl. Phys. Lett. 95 083110

    Article  Google Scholar 

  20. Jiang Q, Liang L H and Zhao D S 2001 J. Phys. Chem. B 105 6275

    Article  Google Scholar 

  21. Jiang Q, Shi H X and Zhao M 1999 J. Chem. Phys. 111 2176

    Article  Google Scholar 

  22. Zhang Z, Li J C and Jiang Q 2000 J. Phys. D: Appl. Phys. 33 2653

    Article  Google Scholar 

  23. Omar M S 2007 Mater. Res. Bull. 42 319

    Article  Google Scholar 

  24. Omar M S 2012 Mater. Res. Bull. 47 3518

    Article  Google Scholar 

  25. Liang L H and Baowen L 2006 Phys. Rev. B 73 153303

    Article  Google Scholar 

  26. Sun C Q 2007 Prog. Solid State Chem. 35 1

    Article  Google Scholar 

  27. Shandiz M A 2008 J. Phys.: Condens. Matter 20 325237

    Google Scholar 

  28. Vanithakumari S C and Nanda K K 2008 Phys. Lett. A 372 6930

    Article  Google Scholar 

  29. Yang C C and Jiang Q 2005 Acta Mater. 53 3305

    Article  Google Scholar 

  30. Guisbiers G 2010 Nanoscale Res. Lett. 5 1132

    Article  Google Scholar 

  31. Banerjee R, Sperling E A, Thompson G B, Fraser H L, Bose S and Ayyub P 2003 Appl. Phys. Lett. 82 4250

    Article  Google Scholar 

  32. Gleiter H 1989 Prog. Mater. Sci. 33 223

    Article  Google Scholar 

  33. Chatterjee P P, Pabi S K and Manna I 1999 J. Appl. Phys. 86 5912

    Article  Google Scholar 

  34. Liu X D, Zhang H Y, Lu K and Hu Z Q 1994 J. Appl. Phys.: Condens. Matter 6 L497

    Article  Google Scholar 

  35. Chattopadhyay P P, Nambissan P M G, Pabi S K and Manna I 2001 Phys. Rev. B 63 054107

    Article  Google Scholar 

  36. Tjong S C and Chen H 2004 Mater. Sci. Eng. R 45 1

    Article  Google Scholar 

  37. Goff J P, Hayes W, Hull S, Hutchings M T and Clausen K N 1999 Phys. Rev. B 59 14202

    Article  Google Scholar 

  38. Park J and Lakes R S 2007 Biomaterials: an introduction (New York, USA: Springer Science + Business Media, LLC) 3rd edn, p 145

  39. Li S, Zheng W T and Jiang Q 2006 Scripta Mater. 54 2091

    Article  Google Scholar 

  40. Mirgorodsky A P, Smirnov M B and Quintard P E 1999 J. Phys. Chem. Solids 60 985

    Article  Google Scholar 

  41. Yuren W, Kunquant L, Dazhi W, Zhonghua W and Zhengzhi F 1994 J. Phys.: Condens. Matter 6 633

    Google Scholar 

  42. Nevitt M V, Fang Y and Chan S -K 1990, J. Am. Ceram. Soc. 73 2502

    Article  Google Scholar 

  43. Ishii T, Wakita H, Ogasawara K and Kim Y-S (eds) 2015 The DV-Xa molecular-orbital calculation method (Switzerland: Springer International Publishing) p 189

  44. Wolten G A 1963 J. Am. Ceram. Soc. 46 418

    Article  Google Scholar 

  45. Bouvier P, Djurado E, Lucazeau G and Bihan T L 2000 Phys. Rev. B 62 8731

    Article  Google Scholar 

  46. Jiang Q, Liang L H and Zhao D S 2001 J. Phys. Chem. B 105 6275

    Article  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the financial support from the University of Salahaddin-Erbil, Iraq (grant no. 540-1762013) and cooperation from Jilin University, Changchun, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BOTAN JAWDAT ABDULLAH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ABDULLAH, B.J., JIANG, Q. & OMAR, M.S. Effects of size on mass density and its influence on mechanical and thermal properties of ZrO2 nanoparticles in different structures. Bull Mater Sci 39, 1295–1302 (2016). https://doi.org/10.1007/s12034-016-1244-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1244-5

Keywords

Navigation